Sets of Functions that are Uncountable

Exposition by William Gasarch

May 4, 2022
The set of all Functions from \mathbb{N} to \mathbb{N}

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.
The set of all Functions from \mathbb{N} to \mathbb{N}

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Pf
The set of all Functions from \(\mathbb{N} \) to \(\mathbb{N} \)

Thm The set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \) is uncountable.

Pf

Assume, BWOC, that set of functions \(\mathbb{N} \) to \(\mathbb{N} \) is countable.

Then we can list them out \(f_1, f_2, \ldots \).

Consider the function \(F(x) = f_x(x) + 1 \).

\(F \) cannot be \(f_1 \) since \(F(1) \neq f_1(1) \).

\(F \) cannot be \(f_{83} \) since \(F(83) \neq f_{83}(83) \).

For all \(i \), \(F \) cannot be \(f_i \) since \(F(i) \neq f_i(i) \).

So \(F \) is NOT on the list and IS from \(\mathbb{N} \) to \(\mathbb{N} \), contradiction.
Thm The set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \) is uncountable.

Pf Assume, BWOC, that set of functions \(\mathbb{N} \) to \(\mathbb{N} \) is countable. Then we can list them out \(f_1, f_2, \ldots \).
The set of all Functions from \mathbb{N} to \mathbb{N}

Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Pf

Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots. Consider the function

$$F(x) = f_x(x) + 1.$$
Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Pf
Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots. Consider the function

$$F(x) = f_x(x) + 1.$$

F cannot be f_1 since $F(1) \neq f_1(1)$.
The set of all Functions from \(\mathbb{N} \) to \(\mathbb{N} \)

Thm The set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \) is uncountable.

Pf

Assume, BWOC, that set of functions \(\mathbb{N} \) to \(\mathbb{N} \) is countable.

Then we can list them out \(f_1, f_2, \ldots \).

Consider the function

$$ F(x) = f_x(x) + 1. $$

\(F \) cannot be \(f_1 \) since \(F(1) \neq f_1(1) \).

\(F \) cannot be \(f_{83} \) since \(F(83) \neq f_{83}(83) \).
The set of all Functions from \(\mathbb{N} \) to \(\mathbb{N} \)

Thm The set of all functions from \(\mathbb{N} \) to \(\mathbb{N} \) is uncountable.

Pf
Assume, BWOC, that set of functions \(\mathbb{N} \) to \(\mathbb{N} \) is countable. Then we can list them out \(f_1, f_2, \ldots \).
Consider the function

\[
F(x) = f_x(x) + 1.
\]

\(F \) cannot be \(f_1 \) since \(F(1) \neq f_1(1) \).
\(F \) cannot be \(f_{83} \) since \(F(83) \neq f_{83}(83) \).
For all \(i \), \(F \) cannot be \(f_i \) since \(F(i) \neq f_i(i) \).
Thm The set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Pf
Assume, BWOC, that set of functions \mathbb{N} to \mathbb{N} is countable. Then we can list them out f_1, f_2, \ldots.
Consider the function

$$F(x) = f_x(x) + 1.$$

F cannot be f_1 since $F(1) \neq f_1(1)$.
F cannot be f_{83} since $F(83) \neq f_{83}(83)$.
For all i, F cannot be f_i since $F(i) \neq f_i(i)$.
So F is NOT on the list and IS from \mathbb{N} to \mathbb{N}, contradiction.
Key to Last Proof

We had to make sure that the final object we produced was a function from \mathbb{N} to \mathbb{N}. For future proofs you must check both properties.
Key to Last Proof

We had to make sure that the final object we produced was

- Not in the list
Key to Last Proof

We had to make sure that the final object we produced was

- Not in the list
- A function from \(\mathbb{N} \) to \(\mathbb{N} \).
We had to make sure that the final object we produced was

- Not in the list
- A function from \(\mathbb{N} \) to \(\mathbb{N} \).

For future proofs you must check both properties.
The set of all Functions from \mathbb{N} to EVENS

Thm The set of all functions from \mathbb{N} to EVENS is uncountable.

Proof Assume, BWOC, the set of functions from \mathbb{N} to EVENS is countable. Then we can list them out as f_1, f_2, \ldots. Consider the function $F(x) = f_x(x) + 1$. CAN'T USE THIS! F is not from \mathbb{N} to EVENS. What to do? Let $F(x) = f_x(x) + 2$. Then F is a function from \mathbb{N} to EVENS, contradicting the assumption that the set is countable. Therefore, the set of all functions from \mathbb{N} to EVENS is uncountable.
The set of all Functions from \mathbb{N} to EVENS

Thm The set of all functions from \mathbb{N} to EVENS is uncountable.

Pf
The set of all Functions from \mathbb{N} to EVENS

Thm The set of all functions from \mathbb{N} to EVENS is uncountable.

Pf
Assume, BWOC, set of functions \mathbb{N} to EVENS is countable.
The set of all Functions from \(\mathbb{N} \) to EVENS

Thm The set of all functions from \(\mathbb{N} \) to EVENS is uncountable.

Pf
Assume, BWOC, set of functions \(\mathbb{N} \) to EVENS is countable. Then can list them out \(f_1, f_2, \ldots \).
The set of all Functions from \(\mathbb{N} \) to EVENS

Thm The set of all functions from \(\mathbb{N} \) to EVENS is uncountable.

Pf

Assume, BWOC, set of functions \(\mathbb{N} \) to EVENS is countable.
Then can list them out \(f_1, f_2, \ldots \).
Consider the function

\[
F(x) = f_x(x) + 1.
\]
The set of all Functions from \mathbb{N} to EVENS

Thm The set of all functions from \mathbb{N} to EVENS is uncountable.

Pf
Assume, BWOC, set of functions \mathbb{N} to EVENS is countable.
Then can list them out f_1, f_2, \ldots.
Consider the function

$$F(x) = f_x(x) + 1.$$

CAN’T USE THIS! F is not from \mathbb{N} to EVENS. What to do?
The set of all Functions from \mathbb{N} to EVENS

Thm The set of all functions from \mathbb{N} to EVENS is uncountable.

Pf
Assume, BWOC, set of functions \mathbb{N} to EVENS is countable. Then can list them out f_1, f_2, \ldots.

Consider the function

$$F(x) = f_x(x) + 1.$$

CAN'T USE THIS! F is not from \mathbb{N} to EVENS. What to do?

$$F(x) = f_x(x) + 2.$$
Thm The set of all functions from \mathbb{N} to SQUARES is uncountable.
The set of all Functions from \(\mathbb{N} \) to SQUARES

Thm The set of all functions from \(\mathbb{N} \) to SQUARES is uncountable.

Pf
The set of all Functions from \mathbb{N} to SQUARES

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable.

Pf
Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable.

Then can list them out f_1, f_2, \ldots.
We want to define F so that $F(x) \neq f_x(x)$ AND $F(x)$ is a square.

$$F(x) = (f_x(x) + 1)^2$$

Make sure this is not $f_x(x)$:

$$(f_x(x) + 1)^2 \neq f_x(x)^2 + 2f_x(x) + 1$$

IF $f_x(x)^2 + 2f_x(x) + 1 = f_x(x)$ then $f_x(x)^2 + f_x(x) + 1 = 0$

Only has complex solutions, so can't happen.
The set of all Functions from \(\mathbb{N} \) to SQUARES

Thm The set of all functions from \(\mathbb{N} \) to SQUARES is uncountable.

Pf

Assume, BWOC, set of all functions \(\mathbb{N} \) to SQUARES is countable. Then can list them out \(f_1, f_2, \ldots \).
The set of all Functions from \mathbb{N} to SQUARES

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable.

Pf
Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots.
We want to define F so that $F(x) \neq f_x(x)$ AND $F(x)$ is a square.

$$F(x) = (f_x(x) + 1)^2$$
The set of all Functions from \(\mathbb{N} \) to SQUARES

Thm The set of all functions from \(\mathbb{N} \) to SQUARES is uncountable.

Pf
Assume, BWOC, set of all functions \(\mathbb{N} \) to SQUARES is countable. Then can list them out \(f_1, f_2, \ldots \).

We want to define \(F \) so that \(F(x) \neq f_x(x) \) AND \(F(x) \) is a square.

\[
F(x) = (f_x(x) + 1)^2
\]

Make sure this is not \(f_x(x) \):
\[
(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1
\]
The set of all Functions from \mathbb{N} to SQUARES

Thm The set of all functions from \mathbb{N} to SQUARES is uncountable.

Pf

Assume, BWOC, set of all functions \mathbb{N} to SQUARES is countable. Then can list them out f_1, f_2, \ldots. We want to define F so that $F(x) \neq f_x(x)$ AND $F(x)$ is a square.

$$F(x) = (f_x(x) + 1)^2$$

Make sure this is not $f_x(x)$:

$$(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1$$

IF $f_x(x)^2 + 2f_x(x) + 1 = f_x(x)$ then $f_x(x)^2 + f_x(x) + 1 = 0$
The set of all Functions from \(\mathbb{N} \) to SQUARES

Thm The set of all functions from \(\mathbb{N} \) to SQUARES is uncountable.

Pf
Assume, BWOC, set of all functions \(\mathbb{N} \) to SQUARES is countable. Then can list them out \(f_1, f_2, \ldots \).
We want to define \(F \) so that \(F(x) \neq f_x(x) \) AND \(F(x) \) is a square.

\[
F(x) = (f_x(x) + 1)^2
\]

Make sure this is not \(f_x(x) \):
\[
(f_x(x) + 1)^2 = f_x(x)^2 + 2f_x(x) + 1
\]
IF \(f_x(x)^2 + 2f_x(x) + 1 = f_x(x) \) then \(f_x(x)^2 + f_x(x) + 1 = 0 \)
Only has complex solutions, so can’t happen.
The set of constant functions is countable since here they are:

\[f_1(x) = 1 \]
\[f_2(x) = 2 \]

etc.
The set of constant functions is countable since here they are:

\(f_1(x) = 1 \)
\(f_2(x) = 2 \)

etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?
The set of constant functions is countable since here they are:

\[f_1(x) = 1 \]
\[f_2(x) = 2 \]

etc.

What goes wrong if we try to prove that the set of constant functions is uncountable?

\[F(x) = f_x(x) + 1. \]
The set of all Constant Functions With Domain \(\mathbb{N} \)

The set of constant functions is countable since here they are:
\[
\begin{align*}
 f_1(x) &= 1 \\
 f_2(x) &= 2 \\
 \text{etc.}
\end{align*}
\]

What goes wrong if we try to prove that the set of constant functions is uncountable?

\[
F(x) = f_x(x) + 1.
\]

1) \(F \) is NOT on the list. Good!
The set of all Constant Functions With Domain \mathbb{N}

The set of constant functions is countable since here they are:
\[
f_1(x) = 1 \\
f_2(x) = 2 \\
etc.
\]
What goes wrong if we try to prove that the set of constant functions is uncountable?

\[
F(x) = f_x(x) + 1.
\]

1) F is NOT on the list. Good!
2) But F is not constant. So proof fails.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} : \)

Every element of \(\mathbb{Q} \) can be described with finite number of bits.

Every element of \(\mathbb{N} \) can be described with finite number of bits.

\(\mathbb{R} \), \(\{ f : \mathbb{N} \rightarrow \mathbb{N} \} \),

Every element of \(\mathbb{R} \) requires an infinite number of bits to represent.

Not quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, 5, 12\).

But most elements of \(\mathbb{R} \) require an infinite number of bits.

Rule of Thumb

Let \(A \) be an infinite set.

▶ If every element of \(A \) can be represented with a finite number of bits then \(A \) is countable.

▶ If an infinite number of elements of \(A \) require an infinite number of bits to be represented, then \(A \) is NOT countable.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}:\)

Every element of \(\mathbb{Q}\) can be described with finite number of bits.

Every element of \(\mathbb{N}\) can be described with finite number of bits.

\(\mathbb{R}, \{f: \mathbb{N} \to \mathbb{N}\}\),

Every element of \(\mathbb{R}\) requires an infinite number of bits to represent.

Not quite right: Some elements of \(\mathbb{R}\) are easy to describe, e.g., \(-3, 5, 12\).

But most elements of \(\mathbb{R}\) require an infinite number of bits.

Rule of Thumb

Let \(A\) be an infinite set.

- If every element of \(A\) can be represented with a finite number of bits then \(A\) is countable.
- If an infinite number of elements of \(A\) require an infinite number of bits to be represented, then \(A\) is not countable.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} \):

Every element of \(\mathbb{Q} \) can be described with a finite number of bits.

\(\mathbb{R} \), \(\{ f : \mathbb{N} \rightarrow \mathbb{N} \} \):

Every element of \(\mathbb{R} \) requires an infinite number of bits to represent.

NOT quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, 5, \frac{12}{7}\).

But most elements of \(\mathbb{R} \) require an infinite number of bits.

Rule of Thumb

Let \(A \) be an infinite set.

- If every element of \(A \) can be represented with a finite number of bits then \(A \) is countable.
- If an infinite number of elements of \(A \) require an infinite number of bits to be represented, then \(A \) is NOT countable.
Intuition

$\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:

Every element of \mathbb{Q} can be described with FINITE number of bits. Every element of \mathbb{N} can be described with FINITE number of bits.
Intuition

$\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}$:
Every element of \mathbb{Q} can be described with FINITE number of bits.
Every element of \mathbb{N} can be described with FINITE number of bits.

\mathbb{R}, $\{f : \mathbb{N} \to \mathbb{N}\}$,
Every element of \mathbb{R} requires an INFINITE number of bits to represent.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} \):

Every element of \(\mathbb{Q} \) can be described with \text{FINITE} number of bits.
Every element of \(\mathbb{N} \) can be described with \text{FINITE} number of bits.

\(\mathbb{R}, \{ f : \mathbb{N} \rightarrow \mathbb{N} \} \),
Every element of \(\mathbb{R} \) requires an \text{INFINITE} number of bits to represent.

\text{NOT quite right: Some elements of} \(\mathbb{R} \) \text{are easy to describe, e.g.,} \(-3, \frac{5}{12}\).
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N}: \)

Every element of \(\mathbb{Q} \) can be described with FINITE number of bits.
Every element of \(\mathbb{N} \) can be described with FINITE number of bits.

\(\mathbb{R}, \{ f : \mathbb{N} \to \mathbb{N} \}, \)
Every element of \(\mathbb{R} \) requires an INFINITE number of bits to represent.
NOT quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, \frac{5}{12} \).
But **most** elements of \(\mathbb{R} \) require and infinite number of bits.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} \):

Every element of \(\mathbb{Q} \) can be described with FINITE number of bits.
Every element of \(\mathbb{N} \) can be described with FINITE number of bits.

\(\mathbb{R}, \{ f : \mathbb{N} \to \mathbb{N} \} \),
Every element of \(\mathbb{R} \) requires an INFINITE number of bits to represent.
NOT quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, \frac{5}{12}\).
But most elements of \(\mathbb{R} \) require an infinite number of bits.

Rule of Thumb

Let \(A \) be an infinite set.
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} \):

Every element of \(\mathbb{Q} \) can be described with \textbf{FINITE} number of bits.
Every element of \(\mathbb{N} \) can be described with \textbf{FINITE} number of bits.

\(\mathbb{R}, \{ f : \mathbb{N} \to \mathbb{N} \} \),
Every element of \(\mathbb{R} \) requires an \textbf{INFINITE} number of bits to represent.
\textbf{NOT} quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, \frac{5}{12}\).
But \textbf{most} elements of \(\mathbb{R} \) require an infinite number of bits.

Rule of Thumb

Let \(A \) be an infinite set.

- If every element of \(A \) can be represented with a finite number of bits then \(A \) is countable
Intuition

\(\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{N} \times \mathbb{N} \):

Every element of \(\mathbb{Q} \) can be described with FINITE number of bits.
Every element of \(\mathbb{N} \) can be described with FINITE number of bits.

\(\mathbb{R}, \{ f : \mathbb{N} \rightarrow \mathbb{N} \} \),

Every element of \(\mathbb{R} \) requires an INFINITE number of bits to represent.
NOT quite right: Some elements of \(\mathbb{R} \) are easy to describe, e.g., \(-3, \frac{5}{12}\).
But most elements of \(\mathbb{R} \) require an infinite number of bits.

Rule of Thumb

Let \(A \) be an infinite set.

- If every element of \(A \) can be represented with a finite number of bits then \(A \) is countable.
- If an infinite number of elements of \(A \) require an infinite number of bits to be represented, then \(A \) is NOT countable.