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How to Play

e To players take turns removing objects from distinct piles
o You can have any number of piles and any amount of objects in each pile
e [Each player must remove at least 1 object and may remove any number of
objects as long as they all come from the same pile
e Depending on the version: the goal of the game is either to
o Avoid taking the last object
o To take the last object
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Consider a 2 pile game of Nim where you win if you don’t have to pick up
the last stone. Prove if both piles of stones have n stones each and it’s the
first player’s turn, the second player can always win.

Base Case: If both piles have O stones in them, the first player loses

Inductive Hypothesis: Assume that for some n >0 and O <i<n. If both piles have i number of
stones and it’s the first player’s turn, the second player can win.

Inductive Step: Consider a game of Nim in which there are two piles of stones, A and B, with n
stones in each. Without loss of generality, let A be the pile that the first player chooses to remove
stones from.

The first player must remove k stones from pile A such that 1< k < n. So, we have n — k stones in
pile A and n stones in pile B.

If the second player removes k stones from pile B, both piles have n — k stones in each.

By the induction hypothesis, the second player can now win this game because there are two
piles with n—k stones in each.
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What is the winning strategy?

e Need to write the sizes of the piles in binary

e Add those numbers up but not in the usual way (AKA use XOR)
o Ifthe number of T’s in a column is odd, you write a 1 underneath it
o Ifit's even, you write a O underneath it.
o Doing this for each column gives a new binary number, and that's the result of the
Nim addition.
e Example:
o Pile 1 has 2 objects
o Pile 2 has 3 objects
® 10
+11
01
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e Charles Bouton studied this game and figured out two things
o Suppose it's your turn and the Nim sum of the number of objects in the pile is equal
to O
m The Nim sum of the number of objects after your move will not be equal to O
o Suppose it's your turn and the Nim sum of the number of objects in the pile is not
equalto O
m Then there is a move which ensures that the Nim sum of the number of
objects in the pile after your move is equal to O
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What is the winning strategy?

e Letplayer1go first and the Nim sum of the number of objects in the piles not
be equalto O

e Player 1's strategy: if possible always make a move that reduces the Nim sum
after your move to O

e This would then mean that whatever player 2 does next, the move would turn
the next Nim sum into a number that's not O

e Player 1wins IFF there is a move he can make that puts the game into a Player
2 win position
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Variant: You have 1 pile. Players can only remove a square
number of objects. The player who removes the last object wins

e What is the winning strategy?
o Let O be bad and 1 be good
o If all numbers 1.. N have been labeled as either bad or good, then
m The number N+1is bad if only good numbers can be reached by
subtracting a positive square
m The number N+1is good if at least one bad number can be reached
by subtracting a positive square
o The winning strategy of the game: Try to pass on a bad number to your
opponent
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e What is the winning strategy?
o Ifthere are only 1, 2, or 3 objects left on your turn, you take all of them

o If you have to move when there are 4 objects you will always lose
m No matter how many you take, you will leave 1, 2, or 3
o Ifthere are 5, 6, or 7 objects, you can win by taking just enough to leave 4

objects
o The winning strategy of the game: At the end of your turn, make it so that

your opponent is taking from a multiple of 4 objects
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Variant: You have 1 pile. Players can only remove 1, 3, or 4 objects.
The player who removes the last object wins

e What is the winning strategy?
o Ifthere are only 1, 3, or 4 objects left on your turn, you take all of them
o If you have to move when there are 2 objects you will always lose
m You will leave 1
If there are 5, you can win by taking 3 objects
If there are 6, you can win by taking 4 objects
If you have to move when there are 7 objects you will always lose
The winning strategy of the game: At the end of your turn, make it so that
your opponent is taking from a pile that is equivalent to 2 or O mod 7

O O O O
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Variant: You have 2 piles. Players can remove as many as they want from
either OR the SAME amount from both. A player wins when they remove
the last object.

e What is the winning strategy?
o Any position in the game can be described by a pair of integers (n, m) with n < m, where n
and m are the piles

o The strategy of the game revolves around cold positions and hot positions:
m Cold Position: the player whose turn it is to move will lose when playing perfectly
m Hot Position: the player whose turn it is to move will win when playing perfectly
m The optimal strategy from a hot position is to move to any cold position

o The classification of positions into hot and cold can be looked at recursively:
m (0,0)is a cold position
m Any position from which a cold position can be reached in a single move is a hot

position

m If every move leads to a hot position, then a position is cold.



