
SATisfiability

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO
If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?

Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO
If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO
If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?

NO
If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO

If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO
If x1 = T then x3 = T , x2 = F . NO GOOD.

If x2 = F then x2 = F . NO GOOD.

Satisfiability (SAT)

Def φ(~x) ∈ SAT if there is ~b such that φ(~b) = T .
If ~b exists it is called a Satisfying Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO
If x1 = T then x3 = T , x2 = F . NO GOOD.
If x2 = F then x2 = F . NO GOOD.

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Complexity of Satisfiability

SAT Problem Given φ, determine if φ ∈ SAT.

One Approach Form Truth Table and see if any of the rows are T.
This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

2. CON Takes time roughly 2n in the worst case.

3. CAVEAT Might do well on a formula that is in SAT since the
algorithm can quit as soon as it finds a satisfying assignment.

On the next few slides discuss the following:

1. Is there a better algorithm?

2. Is there a class of formulas for which there is a better
algorithm?

3. Is this problem interesting to people outside of Logic?

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.

Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.
Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.
Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.
Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE

YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.
Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2n steps.
Is there a better algorithm. Vote

I YES

I NO

I UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If φ is in 3-CNF form (we’ll define that later) then there
exists a randomized 1.306n algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the
formula, then unknown if there is an algorithm better than ∼ 2n.

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

What is Better?

There are many algorithms that work in time αn for some
1 < α < 2.

I These algorithms are very clever but are still Brute Force
Search with Tricks.

I We want to say An Algorithm that is NOT brute force
Search with Tricks. How can we define that?

Contrast:

I There is an algorithm for SAT that takes ∼ (1.1)n.

I There is an algorithm for SAT that takes ∼ n100.

In practice the (1.1)n algorithm is better.

However, the n100 algorithm is not doing brute force search!

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?

Question If SAT is in time n100 why do we care?

Answer If SAT is in time n100 then there is an algorithm that
solves SAT that is not doing brute force search. It is doing
something clever. That cleverness can likely be used to come up
with a much better algorithm.

Notation We denote Polynomial Time by P.

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?

Question If SAT is in time n100 why do we care?

Answer If SAT is in time n100 then there is an algorithm that
solves SAT that is not doing brute force search. It is doing
something clever. That cleverness can likely be used to come up
with a much better algorithm.

Notation We denote Polynomial Time by P.

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?

Question If SAT is in time n100 why do we care?

Answer If SAT is in time n100 then there is an algorithm that
solves SAT that is not doing brute force search. It is doing
something clever. That cleverness can likely be used to come up
with a much better algorithm.

Notation We denote Polynomial Time by P.

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?

Question If SAT is in time n100 why do we care?

Answer If SAT is in time n100 then there is an algorithm that
solves SAT that is not doing brute force search. It is doing
something clever. That cleverness can likely be used to come up
with a much better algorithm.

Notation We denote Polynomial Time by P.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable.

That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are satisfiable. That is,
φ(~x) ∈ SAT if there exists a vector ~b such that φ(~b) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

2-CNFSAT is in P

2-CNFSAT is C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly 2
literals.

2-CNFSAT is in P. Might be a HW. Intuition for now. Consider

(x ∨ y).

If x F then y T.
More generally, with 2-CNFSAT a lot of values are forced.

Usually called 2-SAT.

2-CNFSAT is in P

2-CNFSAT is C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly 2
literals.

2-CNFSAT is in P. Might be a HW. Intuition for now. Consider

(x ∨ y).

If x F then y T.
More generally, with 2-CNFSAT a lot of values are forced.

Usually called 2-SAT.

2-CNFSAT is in P

2-CNFSAT is C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly 2
literals.

2-CNFSAT is in P. Might be a HW. Intuition for now. Consider

(x ∨ y).

If x F then y T.

More generally, with 2-CNFSAT a lot of values are forced.

Usually called 2-SAT.

2-CNFSAT is in P

2-CNFSAT is C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly 2
literals.

2-CNFSAT is in P. Might be a HW. Intuition for now. Consider

(x ∨ y).

If x F then y T.
More generally, with 2-CNFSAT a lot of values are forced.

Usually called 2-SAT.

2-CNFSAT is in P

2-CNFSAT is C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly 2
literals.

2-CNFSAT is in P. Might be a HW. Intuition for now. Consider

(x ∨ y).

If x F then y T.
More generally, with 2-CNFSAT a lot of values are forced.

Usually called 2-SAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally

Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

DNFSAT is in P.

Example (x1 ∧ ¬x2 ∧ x3) ∨ · · ·
The · · · means you can put any thing you want there.
Without knowing anything else, this formula is satisfiable.
Set x1 = T , x2 = F , x3 = T .

More Generally Given φ = C1 ∨ · · ·Cm where each Ci is a ∧ of
literals,

I If there is some Ci that does not have both a variable and its
negation, then φ ∈ DNFSAT.

I Otherwise φ /∈ DNFSAT.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is 3-CNFSAT in P?
Is 3-CNFSAT in P? Vote:

I YES, and this is known (though perhaps complicated). Maybe
it uses Ramsey Theory so I will be teaching it in my other
class.

I NO, and this is known, and the proof is difficult (proving
things can’t be done is usually hard). Maybe it uses Ramsey
Theory so I will be teaching it in my other class.

I UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE The (1.306)n algorithm is the best
algorithm we know.

What Lower Bounds Are Known It is known that 3-CNFSAT
cannot be done in n1.8 time and log-space.

How Long Has It Been Open For? First posed in 1971, though
see next slide.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).

There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and
how much it costs to go from any city to an city, determine
cheapest way to visit all cities, Studied since the 1930’s.

2. Scheduling Given n rooms and when the free, and given m
people who are requesting them for certain timeslots, can you
accommodates all of them? Studied since the 1880’s.

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

I The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

I Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Proper Terminology and What Do People In the
Know Think?

The problems SAT, TSP, and SCHED are three examples of
problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does P = NP?

What does the Theory community think? Someone actually did a
poll and discovered that 88% of the theorists polled think P6=NP
(so SAT /∈P).
If you want to see the poll, here is the link:
http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Proper Terminology and What Do People In the
Know Think?

The problems SAT, TSP, and SCHED are three examples of
problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does P = NP?

What does the Theory community think? Someone actually did a
poll and discovered that 88% of the theorists polled think P6=NP
(so SAT /∈P).
If you want to see the poll, here is the link:
http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Proper Terminology and What Do People In the
Know Think?

The problems SAT, TSP, and SCHED are three examples of
problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does P = NP?

What does the Theory community think? Someone actually did a
poll and discovered that 88% of the theorists polled think P6=NP
(so SAT /∈P).
If you want to see the poll, here is the link:

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Proper Terminology and What Do People In the
Know Think?

The problems SAT, TSP, and SCHED are three examples of
problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does P = NP?

What does the Theory community think? Someone actually did a
poll and discovered that 88% of the theorists polled think P6=NP
(so SAT /∈P).
If you want to see the poll, here is the link:
http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Its not all Bad News I

Scenario Your boss wants you to solve the TSP problem. You
know that finding the optimal solution is likely not easy to do. So
you know to look for an approximation. Perhaps something that
is at worst twice optimal.

More generally, if you now a problem is equivalent to SAT then you
know that you should not look for an optimal poly time solutions.
There are many other options to try.

Its not all Bad News I

Scenario Your boss wants you to solve the TSP problem. You
know that finding the optimal solution is likely not easy to do. So
you know to look for an approximation. Perhaps something that
is at worst twice optimal.

More generally, if you now a problem is equivalent to SAT then you
know that you should not look for an optimal poly time solutions.
There are many other options to try.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them. Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them.

Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them. Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them. Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:

2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them. Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256

He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics
problems that, if solved, they will give the solver $1,000,000.

Resolving P vs NP is one of them. Go to it!

Warning My 4-year old great nephew Jase is already working on
it. On his own he wrote down on a paper plate:
2 + 2 = 4
4 + 4 = 8
8 + 8 = 16
16 + 16 = 32
32 + 32 = 64
64 + 64 = 128
128 + 128 = 256
He then ran out of room; however, his grandmother (my wife’s
sister) tells me he can go all the way to 2048.

