What is a set?

• A set is a collection of distinct objects.
• We use the notation $x \in S$ to say that S contains x.
• We’d like to know if $x \in S$ fast!
• Unless explicitly specified otherwise, sets are unordered.
What is a set?

- A set is a collection of **distinct** objects.
- We use the notation $x \in S$ to say that S contains x.
- We’d like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what’s the best possible data structure to implement a set in memory?

- Doubly Linked List
- Binary Tree
- Stack
- Something else (what?)
What is a set?

• A set is a collection of **distinct** objects.
• We use the notation \(x \in S \) to say that \(S \) contains \(x \).
• We’d like to know if \(x \in S \) fast!
• Unless explicitly specified otherwise, **sets are unordered**.
• Given the last two requirements, what’s the **best possible data structure** to implement a set in memory?

- Doubly Linked List
- Binary Tree
- Stack
- Something else (what?)

Hash table!
Elementary number sets

- **ℕ**: the **natural** numbers
 - \(\mathbb{N} = \{0, 1, 2, 3, \ldots \} \). In our class, \(0 \in \mathbb{N} \)!

- **ℤ**: the **integers**
 - \(\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} \)

- **ℚ**: the **rationals**
 - \(\mathbb{Q} = \{ \frac{a}{b}, (a \in \mathbb{Z}) \land (b \in \mathbb{Z}) \land (b \neq 0) \} \)
 - Any number that can be written as a ratio of integers!

- **ℝ**: the **reals**
 - This will typically be our “upper limit” in 250.
 - That is, we don’t usually care about \(\mathbb{C} \), the set of **complex** numbers
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>(\mathbb{N})</th>
<th>(\mathbb{Z})</th>
<th>(\mathbb{Q})</th>
<th>(\mathbb{R})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>−1</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(\frac{-1}{2})</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(0.333333 \ldots)</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(0.333333 \ldots /0.11111111 \ldots)</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(\pi)</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>(i, \text{ such that } i^2 = -1)</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>−1</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>(-\frac{1}{2})</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.333333...</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>0.333333... / 0.11111111...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi)</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>(i), such that (i^2 = -1)</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>−1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.333333...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.333333.../0.11111111...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i, such that i^2 = −1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{N}</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Q}</th>
<th>\mathbb{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>$-\frac{1}{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.333333\ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0.333333\ldots/0.1111111\ldots$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i, such that $i^2 = -1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>−1</td>
<td>□</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>1/2</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>−1/2</td>
<td>□</td>
<td>□</td>
<td>■</td>
<td>■</td>
</tr>
<tr>
<td>0.333333...</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>0.333333.../0.11111111...</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>π</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>i, such that $i^2 = -1$</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>−1</td>
<td></td>
<td>☑</td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>−1/2</td>
<td></td>
<td></td>
<td>☑</td>
<td>☑</td>
</tr>
<tr>
<td>0.333333...</td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>0.333333.../0.11111111...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i, such that i² = −1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>-1/2</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>0.333333...</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>0.333333.../0.1111111...</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i, such that (i^2 = -1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{N}</th>
<th>\mathbb{Z}</th>
<th>\mathbb{Q}</th>
<th>\mathbb{R}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>-1</td>
<td>\square</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>$\frac{1}{2}$</td>
<td>\square</td>
<td>\square</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>$-\frac{1}{2}$</td>
<td>\square</td>
<td>\square</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>$0.333333\ldots$</td>
<td>\square</td>
<td>\square</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>$0.333333\ldots/0.1111111\ldots$</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>π</td>
<td>\square</td>
<td>\square</td>
<td>\square</td>
<td>\blacksquare</td>
</tr>
<tr>
<td>i, such that $i^2 = -1$</td>
<td>\square</td>
<td>\square</td>
<td>\square</td>
<td>\square</td>
</tr>
</tbody>
</table>
Fill those in!

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Z</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>−1</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>−1/2</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>0.333333…</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>0.333333…/0.11111111…</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>i, such that $i^2 = −1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not even a real number!
Venn Diagrams
• *U* is the *Universal Domain*: a set that we imagine holds every *conceivable* element.

• When talking about sets of numbers, *U* is usually ℝ, the reals.
“There exists” (\exists)

• The symbol \exists (LaTeX: \exists) is read “There exists”.
• Examples:
 • $(\exists x \in \mathbb{R}) [8x = 1]$
“There exists” (\exists)

• The symbol \exists (LaTeX: \exists) is read “There exists”.
• Examples:
 • $(\exists x \in \mathbb{R}) [8x = 1]$ True
“There exists” (∃)

• The symbol \(\exists \) (LaTeX: \exists) is read “There exists”.

• Examples:
 • \((\exists x \in \mathbb{R}) [8x = 1]\) True
 • \((\exists n \in \mathbb{Z}) [n^2 = -1]\)
“There exists” (∃)

• The symbol \exists (LaTeX: \exists) is read “There exists”.
• Examples:
 • $(\exists x \in \mathbb{R}) [8x = 1]$ True
 • $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
“There exists” (∃)

• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:
 • (∃x ∈ ℝ) [8x = 1] True
 • (∃n ∈ ℤ)[n² = −1] False
• Is there a domain D where (∃n ∈ D)[n² = −1] is true?
 Yes No Something else
“There exists” (\exists)

- The symbol \exists (LaTeX: \exists) is read “There exists”.
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
- Is there a domain D where $(\exists n \in D)[n^2 = -1]$ is true?

 The complex numbers \mathbb{C}

 Yes No Something else
“For all” (\(\forall\))

- The symbol \(\forall\) (LaTeX: \(\forall\)) is read “for all”.
- Examples:
 - \((\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]\)
“For all” (\(\forall\))

- The symbol \(\forall\) (LaTeX: `\forall`) is read “for all”.
- Examples:
 - \((\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]\)
 - True
“For all” (∀)

• The symbol ∀ is read “for all”.
• Examples:
 • (∀x ∈ ℕ) [((x > 2) ∧ (x is prime)) ⇒ (x is odd)]
 True
 • (∀n ∈ ℤ) [n^2 ≥ 0]
“For all” \((\forall)\)

• The symbol \(\forall\) is read “for all”.

• Examples:
 • \((\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \implies (x \text{ is odd})]\)
 True
 • \((\forall n \in \mathbb{Z}) [n^2 \geq 0]\) True
“For all” (\forall)

• Let D be the set of all students in this class who are over 8 feet tall.
• ($\forall x \in D)[x \text{ has perfect attendance so far!]
“For all” (∀)

• Let D be the set of all students in this class who are over 8 feet tall.
• (∀x ∈ D)[x has perfect attendance so far!]

If disagree, need to find x ∈ D who missed a class
• Called vacuously true!
Nesting quantifiers

• \((\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]\)
Nesting quantifiers

• \((\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]\) False
Nesting quantifiers

• $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
• $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$
Nesting quantifiers

• \((\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]\) False
• \((\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]\)
 True, \(x = \frac{4}{5}, y = \frac{8}{5}\)
Nesting quantifiers

• $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
• $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$
 True, $x = \frac{4}{5}, y = \frac{8}{5}$

• Common abbreviation: $(\exists x, y \in D)[...]$
• Generally: $(\exists x_1, x_2, ..., x_n \in D)[...]$
Alternating nested quantifiers

• Notice the differences between the following:
 • \((\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]\)
 • \((\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]\)
Alternating nested quantifiers

• Notice the differences between the following:
 • $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 • $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$
Alternating nested quantifiers

• Notice the differences between the following:
 • $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 • $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$ False (\mathbb{N} bounded from below)
Alternating nested quantifiers

• Notice the differences between the following:
 • $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 • $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$ False (\mathbb{N} bounded from below)

• **WHEN QUANTIFIERS ARE DIFFERENT, THEIR ORDER MATTERS!!!!!!**
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2))]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3))]$</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>![Green Circle]</td>
<td></td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td></td>
<td>![Circle]</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td></td>
<td>![Circle]</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td></td>
<td>![Circle]</td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td>![Circle]</td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2))]$</td>
<td>![Circle]</td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3))]$</td>
<td>![Circle]</td>
<td></td>
</tr>
</tbody>
</table>
| $(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$ | ![Circle] | |}

$n = 0$
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[\left((x < y < z) \Rightarrow (x^2 < y^2 < z^2)\right)]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[\left((x < y < z) \Rightarrow (x^3 < y^3 < z^3)\right)]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[\left(x < y \Rightarrow (x < z < y)\right)]$</td>
<td>⬜</td>
<td>⬜</td>
</tr>
</tbody>
</table>

$n = 0$

$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>⊗</td>
<td></td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td></td>
<td>⊖</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td></td>
<td>⊖</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[(x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[(x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$n = 0$

$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$

Similarly, $\frac{1}{2} \notin \mathbb{Z}$
Fill this in!

\[
\begin{array}{|c|c|c|}
\hline
\text{Statement} & \text{True} & \text{False} \\
\hline
(\exists n \in \mathbb{N})[n + n = 0] & \text{✓} & \text{✗} \\
(\exists n \in \mathbb{N})[n + n = 1] & \text{✗} & \text{✓} \\
(\exists n \in \mathbb{Z})[n + n = 1] & \text{✗} & \text{✓} \\
(\exists x, y \in \mathbb{Z})[x + y = 1] & \text{✓} & \text{✗} \\
(\exists x \in \mathbb{R})[x(x + 1) = -1] & \text{✗} & \text{✗} \\
(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2))] & \text{✗} & \text{✗} \\
(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3))] & \text{✗} & \text{✗} \\
(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)] & \text{✗} & \text{✗} \\
\hline
\end{array}
\]

\[n = 0\]
\[2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}\]

Similarly, \(\frac{1}{2} \notin \mathbb{Z}\)
x = 0, y = 1 or x = −1, y = 2, or...
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\exists n \in \mathbb{N})[n + n = 0])</td>
<td>☢️</td>
<td>☐️</td>
</tr>
<tr>
<td>((\exists n \in \mathbb{N})[n + n = 1])</td>
<td>☐️</td>
<td>☢️</td>
</tr>
<tr>
<td>((\exists n \in \mathbb{Z})[n + n = 1])</td>
<td>☐️</td>
<td>☢️</td>
</tr>
<tr>
<td>((\exists x, y \in \mathbb{Z})[x + y = 1])</td>
<td>☢️</td>
<td>☐️</td>
</tr>
<tr>
<td>((\exists x \in \mathbb{R})[x(x + 1) = -1])</td>
<td>☐️</td>
<td>☢️</td>
</tr>
<tr>
<td>((\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2))])</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td>((\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3))])</td>
<td>☐️</td>
<td>☐️</td>
</tr>
<tr>
<td>((\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)])</td>
<td>☐️</td>
<td>☐️</td>
</tr>
</tbody>
</table>

\(n = 0\)

\(2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}\)

Similarly, \(\frac{1}{2} \notin \mathbb{Z}\)

\(x = 0, y = 1\) or \(x = -1, y = 2, \text{ or...}\)

\(x^2 + x + 1 = 0\) has no real solutions
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[\text{if } x < y < z \Rightarrow (x^2 < y^2 < z^2)]$</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[\text{if } x < y < z \Rightarrow (x^3 < y^3 < z^3)]$</td>
<td></td>
<td>☑</td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[\text{if } x < y \Rightarrow (x < z < y)]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$n = 0$

$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$

Similarly, $\frac{1}{2} \notin \mathbb{Z}$

$x = 0, y = 1$ or $x = -1, y = 2$, or...

$x^2 + x + 1 = 0$ has no real solutions

Think of graph of $f(x) = x^2$
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[(x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[(x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

$n = 0$

$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$

Similarly, $\frac{1}{2} \notin \mathbb{Z}$

$x = 0, y = 1$ or $x = -1, y = 2$, or…

$x^2 + x + 1 = 0$ has no real solutions

Think of graph of $f(x) = x^2$

Think of graph of $f(x) = x^3$
Fill this in!

<table>
<thead>
<tr>
<th>Statement</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 0]$</td>
<td>☢️</td>
<td>☐</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{N})[n + n = 1]$</td>
<td>☐</td>
<td>☢️</td>
</tr>
<tr>
<td>$(\exists n \in \mathbb{Z})[n + n = 1]$</td>
<td>☐</td>
<td>☢️</td>
</tr>
<tr>
<td>$(\exists x, y \in \mathbb{Z})[x + y = 1]$</td>
<td>☢️</td>
<td>☐</td>
</tr>
<tr>
<td>$(\exists x \in \mathbb{R})[x(x + 1) = -1]$</td>
<td>☐</td>
<td>☢️</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2))]$</td>
<td>☐</td>
<td>☢️</td>
</tr>
<tr>
<td>$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3))]$</td>
<td>☢️</td>
<td>☐</td>
</tr>
<tr>
<td>$(\forall x, y \in \mathbb{N})(\exists z \in \mathbb{Q})[(x < y) \Rightarrow (x < z < y)]$</td>
<td>☢️</td>
<td>☐</td>
</tr>
</tbody>
</table>

- $n = 0$
- $2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
- Similarly, $\frac{1}{2} \notin \mathbb{Z}$
- $x = 0, y = 1$ or $x = -1, y = 2$, or...
- $x^2 + x + 1 = 0$ has no real solutions
- Think of graph of $f(x) = x^2$
- Think of graph of $f(x) = x^3$
- E.g: arithmetic mean
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
 2. Is false
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
 2. Is false ($D = \mathbb{Z}_{\leq 0}$, counter-example is 0)
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)

• Do the same thing for

$$(\forall x \in D)[x \leq 1] \land (\forall x \in D)(\exists y \in D)[x < y]$$
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)

• Do the same thing for

$$(\forall x \in D)[x \leq 1] \land (\forall x \in D)(\exists y \in D)[x < y]$$

 1. True for $D = (-\infty, 1)$
Finding domains

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 1. Is true ($D = \mathbb{N}$, select $y = x + 1$)
 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)

• Do the same thing for $\forall x \in D \left[x \leq 1 \right] \land (\forall x \in D)(\exists y \in D)[x < y]$

 1. True for $D = (-\infty, 1)$
 2. False for $D = (-\infty, 1]$ (!)
We say that A is a subset of B ($A \subseteq B$) iff

$$\forall x \in A \left[x \in B \right]$$

$$\iff$$

$$\forall x \in U \left[(x \in A) \Rightarrow (x \in B) \right]$$
Superset and proper subset/superset

• We say that B is a **superset** of A ($B \supseteq A$) iff $A \subseteq B$.
• We say that A is a **proper subset** of B ($A \subset B$) iff $(A \subseteq B) \land (A \neq B) \land (A \neq \emptyset)$.
• We say that B is a **proper superset** of A ($B \supset A$) iff $A \subset B$
Union

\[A \cup B = \{ (x \in A) \lor (x \in B) \} \]
Union

\[A \cup B = \{(x \in A) \vee (x \in B)\} \]

Connection between union and logical disjunction!
Intersection

\[A \cap B = \{(x \in A) \land (x \in B)\} \]
Absolute complement

\[A^c = \{ (x \notin A) \} = \{ (x \in U) \land (\neg (x \in A)) \} \]
Absolute complement

\[A^c = \{ x \notin A \} = \{ (x \in U) \land (\neg (x \in A)) \} \]

Connection between absolute complement and logical negation!
Absolute complement

$$A^c = \{x \notin A\} = \{(x \in U) \land (\sim (x \in A))\}$$

Some use A'. They are Wrong, we are right.

Connection between absolute complement and logical negation!
Relative Complement

\[A - B = \{(x \in A) \land (x \notin B)\} \]
Relative Complement

\[A - B = \{ (x \in A) \land (x \notin B) \} \]

Some use \(A \setminus B \). They are wrong, we are right!
Careful about membership and subset!

• Be careful to distinguish between **members** of a set and **subsets** of a set...

 True

 False
Careful about membership and subset!

• Be careful to distinguish between members of a set and subsets of a set...

1. $1 \in \{-2, 0, 1, 3\}$
Careful about membership and subset!

• Be careful to distinguish between **members** of a set and **subsets** of a set...

1. $1 \in \{-2, 0, 1, 3\}$ **True**
2. $1 \in \{-2, 0, \{1\}, 3\}$ **False**
Careful about membership and subset!

• Be careful to distinguish between members of a set and subsets of a set...

1. $1 \in \{-2, 0, 1, 3\}$ \text{T}
2. $1 \in \{-2, 0, \{1\}, 3\}$ \text{F}
3. $1 \subseteq \{-2, 0, \{1\}, 3\}$
Careful about membership and subset!

• Be careful to distinguish between **members** of a set and **subsets** of a set...

1. $1 \in \{-2, 0, 1, 3\}$ **T**
2. $1 \in \{-2, 0, \{1\}, 3\}$ **F**
3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ **F**, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$
Careful about membership and subset!

• Be careful to distinguish between members of a set and subsets of a set...

1. $1 \in \{-2, 0, 1, 3\}$ True
2. $1 \in \{-2, 0, \{1\}, 3\}$ False
3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ False, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ False
5. $\{1\} \in \{-2, 0, \{1\}, 3\}$
Careful about membership and subset!

• Be careful to distinguish between **members** of a set and **subsets** of a set...

1. \(1 \in \{-2, 0, 1, 3\}\) \(T\)
2. \(1 \in \{-2, 0, \{1\}, 3\}\) \(F\)
3. \(1 \subseteq \{-2, 0, \{1\}, 3\}\) \(F\), in fact, not even mathematically correct syntax
4. \(\{1\} \subseteq \{-2, 0, \{1\}, 3\}\) \(F\)
5. \(\{1\} \in \{-2, 0, \{1\}, 3\}\) \(T\)
6. \(\{1\} \subseteq \{-2, 0, 1, 3\}\)
Careful about membership and subset!

- Be careful to distinguish between **members** of a set and **subsets** of a set...

1. $1 \in \{-2, 0, 1, 3\}$ **T**
2. $1 \in \{-2, 0, \{1\}, 3\}$ **F**
3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ **F**, in fact, not even mathematically correct syntax
4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ **F**
5. $\{1\} \in \{-2, 0, \{1\}, 3\}$ **T**
6. $\{1\} \subseteq \{-2, 0, 1, 3\}$ **T**
The empty set ($\emptyset, \{ \}$)

• The empty set, denoted either \emptyset or $\{ \}$, is the **unique** set with no elements.
 • Uniqueness can be proven, through a proof by contradiction!
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the **unique** set with **no elements**.
 - Uniqueness can be proven, through a proof by contradiction!

[True] [False]
The empty set ($\emptyset, \{ \}$)

• The empty set, denoted either \emptyset or $\{ \}$, is the **unique** set with **no elements**.
 • Uniqueness can be proven, through a proof by contradiction!

1. $\emptyset \subseteq \mathbb{N}$
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the **unique** set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

1. \(\emptyset \subseteq \mathbb{N}\) **T**
2. \(\emptyset \subseteq A\) for **any set** \(A\)
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the **unique** set with **no elements**.
 - Uniqueness can be proven, through a proof by contradiction!

1. \(\emptyset \subseteq \mathbb{N}\) \(\text{T}\)
2. \(\emptyset \subseteq A\) for **any set** \(A\) \(\text{T}\)
3. \(\emptyset \subset A\) for **any set** \(A\)
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

1. \(\emptyset \subseteq \mathbb{N}\) \(T\)
2. \(\emptyset \subseteq A\) for any set \(A\) \(T\)
3. \(\emptyset \subset A\) for any set \(A\) \(F\)
4. \(\emptyset \subseteq \emptyset\)
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the **unique** set with **no elements**.
 - Uniqueness can be proven, through a proof by contradiction!

1. \(\emptyset \subseteq \mathbb{N}\) **T**
2. \(\emptyset \subseteq A\) for any set \(A\) **T**
3. \(\emptyset \subset A\) for any set \(A\) **F**
4. \(\emptyset \subseteq \emptyset\) **T**
The empty set \((\emptyset, \{\})\)

- The empty set, denoted either \(\emptyset\) or \(\{\}\), is the **unique** set with **no elements**.
 - Uniqueness can be proven, through a proof by contradiction!

1. \(\emptyset \subseteq \mathbb{N}\) **T**
2. \(\emptyset \subseteq A\) for **any set** \(A\) **T**
3. \(\emptyset \subset A\) for **any set** \(A\) **F**
4. \(\emptyset \subseteq \emptyset\) **T**
The powerset

• Given a set A, the powerset $\mathcal{P}(A)$ is the set of all subsets of A.

 • $\mathcal{P}([0, 1]) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$
 • $\mathcal{P}([0, 1, 2]) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\}\}$
 • Evens, Odds, Primes, Squares
 • And lots more...
Facts about the powerset

• The following are **facts** about the powerset:
 • Since \(\emptyset \subseteq A \) for all sets \(A \), \(\emptyset \in \mathcal{P}(A) \) for all sets \(A \)
 • Since \(A \subseteq A \) for all sets \(A \), \(A \in \mathcal{P}(A) \) for all sets \(A \)
Powerset quizzing

• Let $A = \{1, 2, ..., n\}$
• Then, $|P(A)|$

$\approx n \cdot \log n \quad = n^2 \quad = 2^n \quad = n!$
Let $A = \{1, 2, \ldots, n\}$
Then, $|P(A)|$

\[
\approx n \cdot \log n = n^2 = 2^n = n!
\]
Powerset quizzing

• $P(\{1\}) =$
Powerset quizzing

• $P(\{1\}) = \{\emptyset, \{1\}\}$
• $P(P(\{1\})) =$
Powerset quizzing

• $P(\{1\}) = \{\emptyset, \{1\}\}$
• $P(P(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}$
• $P(\emptyset) =$
Powerset quizzing

• \(P(\{1\}) = \{\emptyset, \{1\}\} \)
• \(P(P(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\} \)
• \(P(\emptyset) = \{\emptyset\} \)
• \(P(\{\emptyset\}) = \)
Powerset quizzing

• $P(\{1\}) = \{\emptyset, \{1\}\}$
• $P(P(\{1\})) = \{\emptyset, \emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}$
• $P(\emptyset) = \{\emptyset\}$
• $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$
STOP
RECORDING