BILL AND EMILY RECORD LECTURE!!!!
Problems with a Point: Exploring Math and Computer Science
Authors:
William Gasarch
Clyde Kruskal
How This Book Came to Be
In 2003 Lance Fortnow started Complexity Blog. In 2007 Bill Gasarch joined and it was a co-blog. In 2015 various book publishers asked us Can you make a book out of your blog? Lance declined but Bill said YES.
Book’s Origin

- In 2003 Lance Fortnow started **Complexity Blog**
In 2003 Lance Fortnow started Complexity Blog

In 2007 Bill Gasarch joined and it was a co-blog.
Book’s Origin

- In 2003 Lance Fortnow started Complexity Blog
- In 2007 Bill Gasarch joined and it was a co-blog.
- In 2015 various book publishers asked us

 Can you make a book out of your blog?
Book’s Origin

- In 2003 Lance Fortnow started Complexity Blog
- In 2007 Bill Gasarch joined and it was a co-blog.
- In 2015 various book publishers asked us
 Can you make a book out of your blog?
- Lance declined but Bill said YES.
Book’s Point

Bill took the posts that had the following format:
Bill took the posts that had the following format:

- make a point **about** mathematics
Bill took the posts that had the following format:

- make a point about mathematics
- do some math to underscore those points
Book’s Point

Bill took the posts that had the following format:

- make a point about mathematics
- do some math to underscore those points

and made those into chapters.
Bill took the posts that had the following format:
- make a point **about** mathematics
- do some math to **underscore** those points
and made those into chapters.

Caveat: Not every chapter is quite like that.
Bill took the posts that had the following format:
 ▶ make a point **about** mathematics
 ▶ do some math to **underscore** those points

and made those into chapters.

Caveat: Not every chapter is quite like that.
To quote Ralph Waldo Emerson

 A foolish consistency is the hobgoblin of small minds.
Possible Subtitles

Problems with a **Point** needed a subtitle.

I proposed **Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent**

The publisher said **NO!**

I proposed **Problems with a Point: Mathematical Meditations and Computer Science Cogitations**

The publisher wisely decided to be less cute and more informative: **Problems with a Point: Exploring Math and Computer Science**
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent
The publisher said NO!
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent

The publisher said NO!

I proposed
Problems with a Point: Mathematical Meditations and Computer Science Cogitations
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent

The publisher said NO!

I proposed
Problems with a Point: Mathematical Meditations and Computer Science Cogitations

The publisher said NO!
Possible Subtitles

Problems with a Point needed a subtitle.
I proposed
Problems with a Point: Mathematical Musing and Math to make those Musings Magnificent

The publisher said NO!

I proposed
Problems with a Point: Mathematical Meditations and Computer Science Cogitations

The publisher said NO!

The publisher wisely decided to be less cute and more informative:
Problems with a Point: Exploring Math and Computer Science
Clyde Joins the Project!

After some samples of Bill’s writing the publisher said
Clyde Joins the Project!

After some samples of Bill’s writing the publisher said

Please Procure People to Polish Prose and Proofs of Problems with a Point

so
Clyde Joins the Project!

After some samples of Bill’s writing the publisher said

Please Procure People to Polish Prose and Proofs of Problems with a Point

so
Clyde Kruskal became a co-author.
Clyde Joins the Project!

After some samples of Bill’s writing the publisher said

Please Procure People to Polish Prose and Proofs of Problems with a Point

so

Clyde Kruskal became a co-author.

Now onto some samples of the book!
Point: Students Can Give Strange Answers
The Paint Can Problem

From the Year 2000 Maryland Math Competition:
There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

Work on it in groups! Prove a General Theorem.

Answer:
If there are 45 different colors of paint then we are done. Assume there are \(\leq 44 \) different colors. If all colors appear \(\leq 44 \) times then there are \(44 \times 44 = 1936 \) < 2000 cans of paint, a contradiction.

Note: this was Problem 1, which is supposed to be easy and indeed 95% got it right. What about the other 5%? Next slide.
The Paint Can Problem

From the Year 2000 Maryland Math Competition:
There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

Work on it in groups! Prove a General Theorem.

Answer:
If there are 45 different colors of paint then we are done. Assume there are \(\leq 44 \) different colors. If all colors appear \(\leq 44 \) times then there are \(44 \times 44 = 1936 < 2000 \) cans of paint, a contradiction.
The Paint Can Problem

From the Year 2000 Maryland Math Competition:
There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

Work on it in groups! Prove a General Theorem.

Answer:
If there are 45 different colors of paint then we are done. Assume there are \(\leq 44 \) different colors. If all colors appear \(\leq 44 \) times then there are \(44 \times 44 = 1936 < 2000 \) cans of paint, a contradiction.

Note: this was Problem 1, which is supposed to be easy and indeed 95% got it right. What about the other 5%? Next slide.
There are 2000 cans of paint. Show that at least one of the following two statements is true:

- There are at least 45 cans of the same color.
- There are at least 45 cans that are different colors.
There are 2000 cans of paint. Show that at least one of the following two statements is true:

- There are at least 45 cans of the same color.
- There are at least 45 cans that are different colors.

ANSWER:

Paint cans are grey. Hence there are all the same color. Therefore there are 2000 cans that are the same color.
One of the Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:

Paint cans are grey. Hence there are all the same color. Therefore there are 2000 cans that are the same color.

What do you think:
There are 2000 cans of paint. Show that at least one of the following two statements is true:

- There are at least 45 cans of the same color.
- There are at least 45 cans that are different colors.

ANSWER:

Paint cans are grey. Hence there are all the same color. Therefore there are 2000 cans that are the same color.

What do you think:

- Thats just stupid. 0 points.
There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:

Paint cans are grey. Hence there are all the same color. Therefore there are 2000 cans that are the same color.

What do you think:

▶ Thats just stupid. 0 points.
▶ Question says *cans of the same color.* ... The full 30 pts.
There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:
Paint cans are grey. Hence there are all the same color. Therefore there are 2000 cans that are the same color.

What do you think:
▶ Thats just stupid. 0 points.
▶ Question says *cans of the same color.* ... The full 30 pts.
▶ Not only does he get 30 points, but everyone else should get 0.
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

- There are at least 45 cans of the same color.
- There are at least 45 cans that are different colors.

ANSWER:

If you look at a paint color really really carefully there will be differences. Hence, even if two cans seem to both be (say) RED, they are really different. Therefore there are 2000 cans of different colors.
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:
If you look at a paint color really really carefully there will be differences. Hence, even if two cans seem to both be (say) RED, they are really different. Therefore there are 2000 cans of different colors.

What do you think:
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:

If you look at a paint color really really carefully there will be differences. Hence, even if two cans seem to both be (say) RED, they are really different. Therefore there are 2000 cans of different colors.

What do you think:

▶ Thats just stupid. 0 points.
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:

If you look at a paint color really really carefully there will be differences. Hence, even if two cans seem to both be (say) RED, they are really different. Therefore there are 2000 cans of different colors.

What do you think:

▶ Thats just stupid. 0 points.
▶ Well... he's got a point. 30 points in fact.
Another Wrong Answers. Or is it?

There are 2000 cans of paint. Show that at least one of the following two statements is true:

▶ There are at least 45 cans of the same color.
▶ There are at least 45 cans that are different colors.

ANSWER:

If you look at a paint color really really carefully there will be differences. Hence, even if two cans seem to both be (say) RED, they are really different. Therefore there are 2000 cans of different colors.

What do you think:

▶ Thats just stupid. 0 points.
▶ Well... he's got a point. 30 points in fact.
▶ Not only does he get 30 points, but everyone else should get 0.
A Triangle Problem

From the year 2007 Maryland Math Competition.

QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.
A Triangle Problem

From the year 2007 Maryland Math Competition.

QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

Note I think I was assigned to grade it since it looks like the kind of problem I would make up, even though I didn’t. It was problem 5 (out of 5) and was hard. About 100 students tried it, 8 got full credit, 10 got partial credit.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

Funny Answer One
All the vertices are red because I can make them whatever color I want. I can also write at a 30 degree angle to the bottom of this paper (The students answer was written at a 30 degree angle to the bottom of the paper.) if thats what I feel like doing at the moment. Just like $2 + 2 = 5$ if thats what my math teacher says. Math is pretty subjective anyway.
Was Student One Serious?

All the vertices are red because I can make them whatever color I want. I can also write at a 30 degree angle to the bottom of this paper (The students answer was written at a 30 degree angle to the bottom of the paper.) if thats what I feel like doing at the moment. Just like $2 + 2 = 5$ if thats what my math teacher says. Math is pretty subjective anyway.
Was Student One Serious?

All the vertices are red because I can make them whatever color I want. I can also write at a 30 degree angle to the bottom of this paper (The students answer was written at a 30 degree angle to the bottom of the paper.) if thats what I feel like doing at the moment. Just like $2 + 2 = 5$ if thats what my math teacher says. Math is pretty subjective anyway.

Theorem The students is not serious.
Was Student One Serious?

All the vertices are red because I can make them whatever color I want. I can also write at a 30 degree angle to the bottom of this paper (The student's answer was written at a 30 degree angle to the bottom of the paper.) if that's what I feel like doing at the moment. Just like $2 + 2 = 5$ if that's what my math teacher says. Math is pretty subjective anyway.

Theorem The student is not serious.

Proof Assume, by contradiction, that they are serious. Then they really think math is subjective. Hence they don't really understand math. Hence they would not have done well enough on Part I to qualify for Part II. But they took Part II. Contradiction.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

I like to think that we live in a world where points are not judged by their color, but by the content of their character. Color should be irrelevant in the plane. To prove that there exists a group of points where only one color is acceptable is a reprehensible act of bigotry and discrimination.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

I like to think that we live in a world where points are not judged by their color, but by the content of their character. Color should be irrelevant in the plane. To prove that there exists a group of points where only one color is acceptable is a reprehensible act of bigotry and discrimination.

Was Student Two Serious?
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

I like to think that we live in a world where points are not judged by their color, but by the content of their character. Color should be irrelevant in the plane. To prove that there exists a group of points where only one color is acceptable is a reprehensible act of bigotry and discrimination.

Was Student Two Serious? Yes.
QUESTION Let ABC be a fixed triangle. Let COL be any 2-coloring of the plane where each point is colored with red or green. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

I like to think that we live in a world where points are not judged by their color, but by the content of their character. Color should be irrelevant in the plane. To prove that there exists a group of points where only one color is acceptable is a reprehensible act of bigotry and discrimination.

Was Student Two Serious? Yes. About Justice!
Each point in the plane is colored either red or green. Let ABC be a fixed triangle. Prove that there is a triangle DEF in the plane such that DEF is similar to ABC and the vertices of DEF all have the same color.

Fix a 2-coloring of the plane.
There are 3 equally-spaced mono points on x-axis

Proof Clearly there are two points on the x-axis of the same color: p_1, p_2 are RED. If p_3, the midpoint of p_1, p_2, is RED then p_1, p_3, p_2 are all RED. DONE. Hence we assume p_3 is GREEN.
There are 3 equally-spaced mono points on x-axis

Proof Clearly there are two points on the x-axis of the same color: p_1, p_2 are RED. If p_3, the midpoint of p_1, p_2, is RED then p_1, p_3, p_2 are all RED. DONE. Hence we assume p_3 is GREEN.

Let p_4 be such that $|p_1 - p_4| = |p_2 - p_1|$. If p_4 is RED then p_4, p_1, p_2 are all RED. DONE. Hence we assume p_4 is GREEN.
There are 3 equally-spaced mono points on x-axis

Proof Clearly there are two points on the x-axis of the same color: p_1, p_2 are RED. If p_3, the midpoint of p_1, p_2, is RED then p_1, p_3, p_2 are all RED. DONE. Hence we assume p_3 is GREEN.

Let p_4 be such that $|p_1 - p_4| = |p_2 - p_1|$. If p_4 is RED then p_4, p_1, p_2 are all RED. DONE. Hence we assume p_4 is GREEN.

Let p_5 be such that $|p_5 - p_2| = |p_2 - p_1|$. If p_5 is RED then p_1, p_2, p_5 are all RED. DONE. Hence we assume p_5 is GREEN.
There are 3 equally-spaced mono points on x-axis

Proof Clearly there are two points on the x-axis of the same color: p_1, p_2 are RED. If p_3, the midpoint of p_1, p_2, is RED then p_1, p_3, p_2 are all RED. DONE. Hence we assume p_3 is GREEN.

Let p_4 be such that $|p_1 - p_4| = |p_2 - p_1|$. If p_4 is RED then p_4, p_1, p_2 are all RED. DONE. Hence we assume p_4 is GREEN.

Let p_5 be such that $|p_5 - p_2| = |p_2 - p_1|$. If p_5 is RED then p_1, p_2, p_5 are all RED. DONE. Hence we assume p_5 is GREEN.

Only case left p_3, p_4, p_5 are all GREEN. DONE.
There are 3 equally-spaced mono points on x-axis

Proof Clearly there are two points on the x-axis of the same color: p_1, p_2 are RED. If p_3, the midpoint of p_1, p_2, is RED then p_1, p_3, p_2 are all RED. DONE. Hence we assume p_3 is GREEN.

Let p_4 be such that $|p_1 - p_4| = |p_2 - p_1|$. If p_4 is RED then p_4, p_1, p_2 are all RED. DONE. Hence we assume p_4 is GREEN.

Let p_5 be such that $|p_5 - p_2| = |p_2 - p_1|$. If p_5 is RED then p_1, p_2, p_5 are all RED. DONE. Hence we assume p_5 is GREEN.

Only case left p_3, p_4, p_5 are all GREEN. DONE.
P, Q, R are RED.

If T or U or S are RED then get RED Triangle similar to ABC.

If not then ALL of T, U, S are GREEN, so get GREEN triangle similar to ABC.
Point: What is a Pattern?
Simple Functions

Bill assigned the following in Discrete Math: For each of the following sequences find a simple function $A(n)$ such that the sequence is $A(1), A(2), A(3), \ldots$

1. 10, -17, 24, -31, 38, -45, 52, \ldots
2. -1, 1, 5, 13, 29, 61, 125, \ldots
3. 6, 9, 14, 21, 30, 41, 54, \ldots

Caveat: These are NOT trick questions. Work on it in groups.
Bill assigned the following in Discrete Math: For each of the following sequences find a simple function $A(n)$ such that the sequence is $A(1), A(2), A(3), \ldots$

1. 10, -17, 24, -31, 38, -45, 52, …
2. -1, 1, 5, 13, 29, 61, 125, …
3. 6, 9, 14, 21, 30, 41, 54, …

Caveat: These are NOT trick questions.

Work on it in groups.

1. 10, -17, 24, -31, 38, -45, 52, … $A(n) = (-1)^{n+1}(7n + 3)$.
2. -1, 1, 5, 13, 29, 61, 125, … $A(n) = 2^n - 3$.
3. 6, 9, 14, 21, 30, 41, 54, … $A(n) = n^2 + 5$.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

*We never defined **Simple Function** in class so I went to Wikipedia.*
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?

I doubt the student knows what those terms mean
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

*We never defined **Simple Function** in class so I went to Wikipedia. It said that **A Simple Function is a linear combination of indicator functions of measurable sets.** Is that what you want us to use?*

I doubt the student knows what those terms mean
I doubt Clyde knows what those terms mean.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

*We never defined **Simple Function** in class so I went to Wikipedia. It said that **A Simple Function** is a linear combination of indicator functions of measurable sets. Is that what you want us to use?*

I doubt the student knows what those terms mean.
I doubt Clyde knows what those terms mean.
I doubt Emily knows what those terms mean.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?

I doubt the student knows what those terms mean.
I doubt Clyde knows what those terms mean.
I doubt Emily knows what those terms mean.
I don’t know what these terms mean.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?

I doubt the student knows what those terms mean. I doubt Clyde knows what those terms mean. I doubt Emily knows what those terms mean. I don’t know what these terms mean.

I told him NO— all I wanted is an easy-to-describe function.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?

I doubt the student knows what those terms mean.
I doubt Clyde knows what those terms mean.
I doubt Emily knows what those terms mean.
I don’t know what these terms mean.

I told him NO— all I wanted is an easy-to-describe function.
I should have told him to use that def to see what he did.
A Student asks — What is a Simple Function?

One student, in earnest, emailed Bill the following:

We never defined Simple Function in class so I went to Wikipedia. It said that A Simple Function is a linear combination of indicator functions of measurable sets. Is that what you want us to use?

I doubt the student knows what those terms mean.
I doubt Clyde knows what those terms mean.
I doubt Emily knows what those terms mean.
I don’t know what these terms mean.

I told him NO— all I wanted is an easy-to-describe function.
I should have told him to use that def to see what he did.
The student got the first one right, but left the other two blank.
When Do Patterns Hold?

The last question brings up the question of when patterns do and don’t hold. We looked for cases where a pattern did not hold.
First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every pair of n points on a circle. For $n = 1, 2, 3, 4, 5$:

Based on this data what guess is tempting? $2n - 1$.

But for $n = 6$, the number of regions is only 31.

The actual number of regions for n points is $(\binom{n}{4}) + (\binom{n}{2}) + 1$.

First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every pair of n points on a circle. For $n = 1, 2, 3, 4, 5$:

Based on this data what guess is tempting?

$2n - 1$.
First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every pair of n points on a circle. For $n = 1, 2, 3, 4, 5$:

Based on this data what guess is tempting? 2^{n-1}.
First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every pair of n points on a circle. For $n = 1, 2, 3, 4, 5$:

- For $n = 1$: 1 region
- For $n = 2$: 2 regions
- For $n = 3$: 4 regions
- For $n = 4$: 8 regions
- For $n = 5$: 16 regions

Based on this data what guess is tempting? 2^{n-1}.

But for $n = 6$, the number of regions is only 31.
First Non-Pattern: n Points on a circle

What is the max number of regions formed by connecting every pair of n points on a circle. For $n = 1, 2, 3, 4, 5$:

![Diagram of points on a circle connected by lines]

Based on this data what guess is tempting? 2^{n-1}.

But for $n = 6$, the number of regions is only 31.

The actual number of regions for n points is $\binom{n}{4} + \binom{n}{2} + 1$.
Second Non-Pattern: Borwein Integrals

\[
\int_{0}^{\infty} \frac{\sin x}{x} = \frac{\pi}{2}
\]

\[
\int_{0}^{\infty} \frac{\sin x \sin \frac{x}{3}}{x} = \frac{\pi}{2}
\]

\[
\vdots
\]

\[
\int_{0}^{\infty} \frac{\sin x \sin \frac{x}{3} \sin \frac{x}{5} \sin \frac{x}{7} \sin \frac{x}{9} \sin \frac{x}{11} \sin \frac{x}{13}}{x} = \frac{\pi}{2}
\]
Second Non-Pattern: Borwein Integrals

\[
\begin{align*}
\int_0^\infty \frac{\sin x}{x} = & \quad \frac{\pi}{2} \\
\int_0^\infty \frac{\sin x \sin \frac{x}{3} \sin \frac{x}{5} \sin \frac{x}{7} \sin \frac{x}{9} \sin \frac{x}{11} \sin \frac{x}{13}}{x} = & \quad \frac{\pi}{2} \\
: & \\
\int_0^\infty \frac{\sin x \sin \frac{x}{3} \sin \frac{x}{5} \sin \frac{x}{7} \sin \frac{x}{9} \sin \frac{x}{11} \sin \frac{x}{13} \sin \frac{x}{15}}{x} = & \quad \frac{\pi}{2}
\end{align*}
\]

But

\[
\int_0^\infty \frac{\sin x \sin \frac{x}{3} \sin \frac{x}{5} \sin \frac{x}{7} \sin \frac{x}{9} \sin \frac{x}{11} \sin \frac{x}{13} \sin \frac{x}{15}}{x} = \frac{\pi}{2}
\]

\[
\frac{4678079247134407386537864469\pi}{935615849440640907310521750000} \approx 0.9999999999852937186 \times \frac{\pi}{2}
\]
Why the breakdown at 15?

Because

$$\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{13} < 1$$

but

$$\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{15} > 1.$$
Another Non-Pattern: More Borwein Integrals

\[\int_0^\infty 2 \cos(x) \frac{\sin x}{x} = \frac{\pi}{2} \]
Another Non-Pattern: More Borwein Integrals

\[
\int_0^\infty 2 \cos(x) \frac{\sin x}{x} = \frac{\pi}{2}
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3}}{x \frac{x}{3}} = \frac{\pi}{2}
\]
Another Non-Pattern: More Borwein Integrals

\[
\int_{0}^{\infty} 2 \cos(x) \frac{\sin x}{x} = \frac{\pi}{2}
\]

\[
\int_{0}^{\infty} 2 \cos(x) \frac{\sin x \sin \frac{x}{3}}{x} = \frac{\pi}{2}
\]

\vdots
Another Non-Pattern: More Borwein Integrals

\[
\int_0^\infty 2 \cos(x) \frac{\sin x}{x} = \frac{\pi}{2}
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3}}{x} = \frac{\pi}{2}
\]

\[
\vdots
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3} \ldots \sin \frac{x}{111}}{x} = \frac{\pi}{2}
\]
Another Non-Pattern: More Borwein Integrals

\[
\int_0^\infty 2 \cos(x) \frac{\sin x}{x} = \frac{\pi}{2}
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3}}{x \frac{x}{3}} = \frac{\pi}{2}
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3} \cdots \sin \frac{x}{111}}{x \frac{x}{3} \cdots \frac{x}{111}} = \frac{\pi}{2}
\]

\[
\int_0^\infty 2 \cos(x) \frac{\sin x \sin \frac{x}{3} \cdots \sin \frac{x}{113}}{x \frac{x}{3} \cdots \frac{x}{113}} < \frac{\pi}{2}
\]
Why the breakdown at 113?

Because

\[\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{111} < 2 \]

but

\[\frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{113} > 2. \]
Computers to FIND proofs vs Computers to DO Proofs
Colorings and Square Differences

The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
Colorings and Square Differences

The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
2. There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.
Colorings and Square Differences

The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

2. There exists a number W_3 such that, for all 3-colorings of \{1, \ldots, W_3\} there exists 2 nums, square-apart, same color.

3. There exists a number W_4 such that, for all 4-colorings of \{1, \ldots, W_4\} there exists two nums, square-apart, same color.

The proofs in the literature of these theorems give ENORMOUS bounds on W_2, W_3, W_4, W_c. We look at easier proofs with two points in mind:

- Would they be good questions on a HS math competition?
- What is the role of Computers in these proofs?
The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of
 $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
2. There exists a number W_3 such that, for all 3-colorings of
 $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.
3. There exists a number W_4 such that, for all 4-colorings of
 $\{1, \ldots, W_4\}$ there exists two nums, square-apart, same color.
4. For all c there exists a number W_c
Colorings and Square Differences

The following are all true:

1. There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
2. There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.
3. There exists a number W_4 such that, for all 4-colorings of $\{1, \ldots, W_4\}$ there exists two nums, square-apart, same color.
4. For all c there exists a number W_c . . .

The proofs in the literature of these theorems give EEEEEEEEEENORMOUS bounds on W_2, W_3, W_4, W_c. We look at easier proofs with two points in mind:

- Would they be good questions on a HS math competition?
- What is the role of Computers in these proofs?
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of \(\{1, \ldots, W_2\} \) there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of $\{1, 2, 3, \ldots\}$ with colorings R and B. We can assume $COL(1) = R$.
There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume $\text{COL}(1) = R$. Since 1 is a square $\text{COL}(2) = B$.

AH-HA: $\text{COL}(1) = \text{COL}(5)$ and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.

AH-HA: $RBRB$ shows that $W_2 \leq 5$. So $W_2 = 4$. Upshot Could be easy HS Math Comp Prob. No computer used.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume COL(1) = R.
Since 1 is a square COL(2) = B.
Since 1 is a square COL(3) = R.

AH-HA: COL(1) = COL(5) and 5 − 1 = 4 = 2². So $W_2 \leq 5$.

AH-HA: RBRB shows that $W_2 \leq 5$.

So $W_2 = 4$.

Upshot: Could be easy HS Math Comp Prob. No computer used.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of \{1,\ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume $\text{COL}(1) = R$.
Since 1 is a square $\text{COL}(2) = B$.
Since 1 is a square $\text{COL}(3) = R$.
Since 1 is a square $\text{COL}(4) = B$.

AH-HA: $\text{COL}(1) = \text{COL}(5)$ and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.

AH-HA: RBRB shows that $W_2 \leq 5$.

So $W_2 = 4$.

Upshot
Could be easy HS Math Comp Prob. No computer used.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of $\{1, 2, 3, \ldots\}$ with colorings R and B. We can assume $COL(1) = R$.

Since 1 is a square $COL(2) = B$.

Since 1 is a square $COL(3) = R$.

Since 1 is a square $COL(4) = B$.

Since 1 is a square $COL(5) = R$.

AH-HA: $COL(1) = COL(5)$ and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.

AH-HA: $RBRB$ shows that $W_2 \leq 5$.

So $W_2 = 4$.

Upshot Could be easy HS Math Comp Prob. No computer used.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume COL(1) = R.

Since 1 is a square COL(2) = B.

Since 1 is a square COL(3) = R.

Since 1 is a square COL(4) = B.

Since 1 is a square COL(5) = R.

AH-HA: COL(1) = COL(5) and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.
There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume COL(1) = R.

Since 1 is a square COL(2) = B.

Since 1 is a square COL(3) = R.

Since 1 is a square COL(4) = B.

Since 1 is a square COL(5) = R.

AH-HA: COL(1) = COL(5) and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.

AH-HA: $RBRB$ shows that $W_2 \leq 5$.

So $W_2 = 4$.

Upshot

Could be easy HS Math Comp Prob. No computer used.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of \{1, \ldots, W_2\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of \{1, 2, 3, \ldots\} with colorings R and B. We can assume $COL(1) = R$.
Since 1 is a square $COL(2) = B$.
Since 1 is a square $COL(3) = R$.
Since 1 is a square $COL(4) = B$.
Since 1 is a square $COL(5) = R$.

AH-HA: $COL(1) = COL(5)$ and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.
AH-HA: $RBRB$ shows that $W_2 \leq 5$.
So $W_2 = 4$.
2-colorings and Square Differences

There exists a number W_2 such that, for all 2-colorings of $\{1, \ldots, W_2\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_2.

Let COL be a 2-coloring of $\{1, 2, 3, \ldots\}$ with colorings R and B. We can assume $COL(1) = R$.
Since 1 is a square $COL(2) = B$.
Since 1 is a square $COL(3) = R$.
Since 1 is a square $COL(4) = B$.
Since 1 is a square $COL(5) = R$.

AH-HA: $COL(1) = COL(5)$ and $5 - 1 = 4 = 2^2$. So $W_2 \leq 5$.
AH-HA: $RBRB$ shows that $W_2 \leq 5$.
So $W_2 = 4$.

Upshot Could be easy HS Math Comp Prob. No computer used.
3-colorings and Square Differences

There exists a number W_3 such that, for all 3-colorings of \{1, \ldots, W_3\} there exists 2 nums, square-apart, same color.
3-colorings and Square Differences

There exists a number W_3 such that, for all 3-colorings of $\{1, \ldots, W_3\}$ there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_3.

Figure: $\text{COL}(x) = \text{COL}(x + 41)$
3-colorings and Square Differences

There exists a number W_3 such that, for all 3-colorings of \{1, \ldots, W_3\} there exists 2 nums, square-apart, same color.

Work on in groups and try to minimize W_3.

Figure: $\text{COL}(x) = \text{COL}(x + 41)$
Since $\text{COL}(x) = \text{COL}(x + 41) \ldots$

Use $\text{COL}(x) = \text{COL}(x + 41)$ to finish the proof and find upper bound on W_3.

So 1 and 41 are a square apart and the same color.

$W_3 \leq 1 + 41^2 = 1682$

Can we get better bound on W_3?
Since $\text{COL}(x) = \text{COL}(x + 41) \ldots$

Use $\text{COL}(x) = \text{COL}(x + 41)$ to finish the proof and find upper bound on W_3.

$$\text{COL}(1) = \text{COL}(1+41) = \text{COL}(1+2\times41) = \cdots = \text{COL}(1+41\times41)$$
Since $\text{COL}(x) = \text{COL}(x + 41)$. . .

Use $\text{COL}(x) = \text{COL}(x + 41)$ to finish the proof and find upper bound on W_3.

$\text{COL}(1) = \text{COL}(1+41) = \text{COL}(1+2\times41) = \cdots = \text{COL}(1+41\times41)$

So 1 and 41^2 are a square apart and the same color.

$W_3 \leq 1 + 41^2 = 1682$
Since $\text{COL}(x) = \text{COL}(x + 41) \ldots$

Use $\text{COL}(x) = \text{COL}(x + 41)$ to finish the proof and find upper bound on W_3.

$$\text{COL}(1) = \text{COL}(1 + 41) = \text{COL}(1 + 2 \times 41) = \cdots = \text{COL}(1 + 41 \times 41)$$

So 1 and 41^2 are a square apart and the same color.

$W_3 \leq 1 + 41^2 = 1682$

Can we get better bound on W_3?
Better Bound on W_3

Figure: If $x \geq 10$ then $\text{COL}(x) = \text{COL}(x + 7)$, so $W_3 \leq 59$
Reflection on W_3, W_4

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of \{1,...,2006\} there exists 2 numbers that are a square apart that are the same color.

2. 240 took exam, 40 tried this problem, 10 got it right.

4. Is there a HS-proof that W_4 exists? Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told NO.

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of \{1, \ldots, 2006\} there exists 2 numbers that are a square apart that are the same color.

2. 240 took exam, 40 tried this problem, 10 got it right.

4. Is there a HS-proof that W_4 exists? Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told NO.

Reflection on W_3, W_4

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006:
 Show that for all 3-colorings of $\{1, \ldots, 2006\}$ there exists 2 numbers that are a square apart that are the same color

2. 240 took exam, 40 tried this problem, 10 got it right.
Reflection on W_3, W_4

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: *Show that for all 3-colorings of \{1, \ldots, 2006\} there exists 2 numbers that are a square apart that are the same color.*

2. 240 took exam, 40 tried this problem, 10 got it right.

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of \{1, \ldots, 2006\} there exists 2 numbers that are a square apart that are the same color.

2. 240 took exam, 40 tried this problem, 10 got it right.

4. **Is there a HS-proof that W_4 exists?** Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told NO.
1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: *Show that for all 3-colorings of \{1, \ldots, 2006\} there exists 2 numbers that are a square apart that are the same color*

2. 240 took exam, 40 tried this problem, 10 got it right.

4. **Is there a HS-proof that W_4 exists?** Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told **NO**.

5. The question still remains: Is there a HS proof that W_4 exists?
Reflection on W_3, W_4

1. Problem 5 (so hard) on UMCP HS Math Comp, 2006: Show that for all 3-colorings of \{1, \ldots, 2006\} there exists 2 numbers that are a square apart that are the same color.

2. 240 took exam, 40 tried this problem, 10 got it right.

4. **Is there a HS-proof that W_4 exists?** Bill wanted to put this problem on the next HS exam to find out. He was (wisely) told **NO**.

W_4 Exists: $\text{COL}(x) = \text{COL}(x + 290, 085, 290)$
Reflection on W_4

1. Zach's proof shows $W_4 \leq 1 + 299,085,290^2$.

 PRO: Proof is easy to verify

 CON: Number is large, proof does not generalize to W_5.

2. The classical proof.

 PRO: Gives bounds for W_c.

 CON: Bounds are GINORMOUS, even for W_2.

3. A Computer Search showed that $W_4 = 58$.

 PRO: Get exact value.

 CON: not human-verifiable. Does not generalize to W_5.

Which do you prefer?
Reflection on W_4

1. Zach’s proof shows $W_4 \leq 1 + 299,085,290^2$.
 - **PRO** Proof is easy to verify
 - **CON** Number is large, proof does not generalize to W_5.

2. The classical proof.
 - **PRO** Gives bounds for W_c.
 - **CON** Bounds are GINORMOUS, even for W_2.

3. A Computer Search showed that $W_4 = 58$.
 - **PRO** Get exact value.
 - **CON** not human-verifiable. Does not generalize to W_5.

Which do you prefer?
Reflection on W_4

1. Zach’s proof shows $W_4 \leq 1 + 299,085,290^2$.
 - **PRO** Proof is easy to verify
 - **CON** Number is large, proof does not generalize to W_5.

2. The classical proof.
 - **PRO** Gives bounds for W_c.
 - **CON** Bounds are GINORMOUS, even for W_2.

Which do you prefer?
Reflection on W_4

1. Zach’s proof shows $W_4 \leq 1 + 299,085,290^2$.
 - **PRO** Proof is easy to verify
 - **CON** Number is large, proof does not generalize to W_5.

2. The classical proof.
 - **PRO** Gives bounds for W_c.
 - **CON** Bounds are GINORMOUS, even for W_2.

3. A Computer Search showed that $W_4 = 58$.
 - **PRO** Get exact value.
 - **CON** not human-verifiable. Does not generalize to W_5.

Which do you prefer?
How Amazon Prices Books
Our Book on Amazon?

The book cost more used than new!
https://www.amazon.com/
Problems-Point-Exploring-Computer-Science/dp/
9813279974
Our Book on Amazon?

The book cost more used than new!
https://www.amazon.com/
Problems-Point-Exploring-Computer-Science/dp/
9813279974

Chapter 1 of

Problems with two Points:
More Explorations of Math and Computer Science

will be

The Mathematics of Book Pricing on Amazon
BILL AND EMILY STOP RECORDING LECTURE!!!!