Homework 01, MORALLY Due Feb 5 at 10:00AM DEAD-CAT DAY Feb 7, 10:00AM

1. (20 points) Give a Propositional Formula on four variables that has exactly three satisfying assignments. Give the satisfying assignments.
2. (20 points) Use truth table so show that

$$
(x \vee y) \wedge z
$$

is not equivalent to

$$
x \vee(y \wedge z)
$$

INDICATE which rows they differ on.
3. (30 points) n has the emily property if there is a formula on n variables with exactly $n^{2}+100$ satisfying assignments.
(a) (15 points) Fill in the BLANK in the following sentence n has the emily property $\operatorname{IFF} \operatorname{BLANK}(n)$.

The condition BLANK has to be simple, for example, n is divisible by 5 (thats not the answer).
(b) (15 points) Prove the statement you made in the first part. Note that this means you have to show that If $\operatorname{BLANK}(n)$ then n has the emily property and
If $\operatorname{NOT}(\operatorname{BLANK}(n))$ then n DOES NOT have the emily property
4. (30 points) (NOTE: 0 and 1 are NOT prime. You will need that for this problem.)
(a) (15 points) View the input x, y, z as the number in binary $x y z$ which we denote $(x y z)$. For example, 100 is 4 .
Write a Truth Table for the following function with 3 inputs x, y, z and 1 output a.

$$
f(x, y, z)= \begin{cases}0 & \text { if }(x y z) \text { is NOT PRIME. } \\ 1 & \text { if }(x y z) \text { is PRIME }\end{cases}
$$

(b) (15 points) Convert your truth table into formulas. DO NOT SIMPLIFY.
(c) (0 points- DO NOT HAND IN) Draw a circuit that computes that truth table.

