Homework 01, MORALLY Due Feb 5 at 10:00AM DEAD-CAT DAY Feb 7, 10:00AM

1. (20 points) Give a Propositional Formula on four variables that has exactly three satisfying assignments. Give the satisfying assignments.

SOLUTION TO PROBLEM ONE

We give a formula of the form $C_{1} \vee C_{2} \vee C_{3}$ so that the three assignments are those that make C_{1} true, C_{2} true, C_{3} true, and make sure that no assignment satsifies two of those
Vars are w, x, y, z

$$
(w \wedge x \wedge y \wedge z) \vee(w \wedge x \wedge y \wedge \bar{z}) \vee(w \wedge x \wedge \bar{y} \wedge \bar{z})
$$

EXERCISE FOR YOU: Do more of these. How many such formulas are there?
END OF SOLUTION TO PROBLEM ONE
2. (20 points) Use truth table so show that

$$
(x \vee y) \wedge z
$$

is not equivalent to

$$
x \vee(y \wedge z)
$$

INDICATE which rows they differ on.

SOLUTION TO PROBLEM TWO

Below is the truth table. Here is how I did it with some shortcuts.
Look at the first formula $(x \vee y) \wedge z$. If $z=F$ then its false. So I filled in those four entries. For those entries left $z=T$, so the formula is really $x \vee y$. So thats T unless $x=y=F$.
Look at the second formula $x \vee(y \wedge z)$. If x is true then its true. So I filled in those four entries. For those entries left $x=F$, so the formula is really $y \wedge z$. So thats F unless $y=z=T$.
We put a * on the evaluation when the formulas give different values.

x	y	z	$(x \vee y) \wedge z$	$x \vee(y \wedge z)$
F	F	F	F	F
F	F	T	F	F
F	T	F	F	F
F	T	T	T	T
T	F	F	$F *$	$T *$
T	F	T	T	T
T	T	F	$F *$	$T *$
T	T	T	T	T

END OF SOLUTION TO PROBLEM TWO
3. (30 points) n has the emily property if there is a formula on n variables with exactly $n^{2}+100$ satisfying assignments.
(a) (15 points) Fill in the BLANK in the following sentence
n has the emily property IFF $\operatorname{BLANK}(n)$.
The condition BLANK has to be simple, for example, n is divisible by 5 (thats not the answer).
(b) (15 points) Prove the statement you made in the first part. Note that this means you have to show that
If $\operatorname{BLANK}(n)$ then n has the emily property
and
If $\operatorname{NOT}(\operatorname{BLANK}(n))$ then n DOES NOT have the emily property

SOLUTION TO PROBLEM THREE

(a) n has the emily property $\operatorname{IFF} \operatorname{BLANK}(n)$.

So we need that there is a boolean formula with exactly $n^{2}+100$ satisfying assignments. Here is how you would construct such a formula: Make a Truth Table where the first $n^{2}+100$ rows are T and the rest are F, and then make a formula from that truth table (as shown in class). SO you might thing you can do this for ALL n. But you would be wrong. There are 2^{n} rows in a truth table. So we need

$$
n^{2}+100 \leq 2^{n}
$$

So we need $2^{n}-n^{2}-100 \geq 0$.
There are two ways to do this:
METHOD ONE: Plug $n=1,2,3, \ldots$ until you get $2^{n}-n^{2}-$ $100 \geq 0$. Then assume this is true for all larger n (this is not rigorous, but its true and we're fine with it).
$n=1: 2^{1}-1^{2}-100<0$ so NO
$n=2: 2^{2}-2^{2}-100<0$ so NO
WAIT- we need to have $2^{n} \geq 100$. This might not suffice but we should start there. Thats $n=7$ since $2^{6}=64<100$ but $2^{7}=128>100$.
$n=7: 2^{7}-7^{2}-100=128-149<0$.
$n=8: 2^{8}-8^{2}-100=256-164>0$. YEAH.
So $\operatorname{BLANK}(n)$ is $n \geq 8$.
METHOD TWO: Let $f(x)=2^{x}-x^{2}-100$. We need to know when this is always positive. Lets take the derivative and find \max and min
$f^{\prime}(x)=(\ln 2) 2^{x}-2 x$. One can find that their are two roots, one close to 1 and one close to 3 . Evaluating the function in the intervals before and between the roots, one can find out tht being 4 the function is increasing.
Now look at the original f. Its positive for the first time (at an integer) at 8. Since the deriviative is positive fom 4 on, f is increasing and hence positive from 8 on.
$\operatorname{BLANK}(n)$ is $n \geq 8$.
METHOD TWO is messier than METHOD ONE; however, METHOD
TWO is more rigorous. If that does not impress you, you are not alone.
(b) I did the prove while doing the problem.

END OF SOLUTION TO PROBLEM THREE

4. (30 points) (NOTE: 0 and 1 are NOT prime. You will need that for this problem.)
(a) (15 points) View the input x, y, z as the number in binary $x y z$ which we denote ($x y z$). For example, 100 is 4 .
Write a Truth Table for the following function with 3 inputs x, y, z and 3 outputs a, b, c.

$$
f(x, y, z)= \begin{cases}0 & \text { if }(x y z) \text { is NOT PRIME. } \\ 1 & \text { if }(x y z) \text { is PRIME }\end{cases}
$$

(b) (15 points) Convert your truth table into formulas. DO NOT SIMPLIFY.
(c) (0 points- DO NOT HAND IN) Draw a circuit that computes that truth table.

SOLUTION TO PROBLEM FOUR

(a) Truth Table for IS IT A PRIME

a	b	c	prime?
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(b) Formula. Look at the rows that evaluate to 1. For each one obtain a mini-fml. Then OR then together.

$$
(\neg a \wedge b \wedge \neg c) \vee(\neg a \wedge b \wedge c) \vee(a \wedge \neg b \wedge c) \vee(a \wedge b \wedge c)
$$

