\documentclass[12pt]{article} \usepackage{amsmath} \begin{document} \centerline{\bf Homework 9, MORALLY Due 10:00AM April 22} \newcommand{\SPS}{{\rm SPS}} \newcommand{\IO}{\exists^\infty} \newcommand{\st}{\mathrel{:}} \newcommand{\goes}{\Rightarrow} \newcommand{\NSQ}{{\rm NSQ}} \newcommand{\into}{{\rightarrow}} \newcommand{\lf}{\left\lfloor} \newcommand{\rf}{\right\rfloor} \newcommand{\lc}{\left\lceil} \newcommand{\rc}{\right\rceil} \newcommand{\Ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\ceil}[1]{\left\lceil {#1}\right\rceil} \newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor} \newcommand{\Z}{{\sf Z}} \newcommand{\N}{{\sf N}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\D}{{\sf D}} \newcommand{\Rpos}{{\sf R}^+} \begin{enumerate} \item (30 points) Recall the BEE sequence. \smallskip $a_1=1$ \smallskip $(\forall n\ge 2)[a_n = a_{n-1} + a_{\floor{n/2}}]$ Try to prove the following: {\it There are an infinite number of $n$ such that $a_n\equiv 0 \pmod 9$.} You will do this by following the proof for moe 7. Show where the proof breaks down. \smallskip (Recall that the the statement $(\IO n)[a_n\equiv 0 \pmod 9]$ is not known to be true or false, though empirical evidece suggests that its true. Our approach did not work; however, some other approach might.) \newpage \item (30 points) Recall that $|\SPS(1,\ldots,n)|=\frac{n(n+1)}{2}+1$. Assume $n$ is large. What is $|\SPS(1,\ldots,n-1,2^n)|$? \newpage \item (40 points) Recall that the AM-GM inequality is For all $n\ge 2$, for all $x_1,\ldots,x_n\in\R^+$ $$\frac{x_1+\cdots+x_n}{n} \ge (x_1\cdots x_n)^{1/n}.$$ with equality iff $x_1=\cdots=x_n$. We are wondering: When are the Arithmetic Mean and the Geometric Mean the furthest apart? \begin{enumerate} \item Write a program that will do the following: \begin{enumerate} \item Input $n,N$ \item For all subsets $\{x_1<\cdots