Combinatorial Identities

250H

Prove: $2^{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$
Proof (1): The number of subsets of $\{1,2, \ldots, n\}$ is 2^{n}. From that set we can choose 0 elements or 1 elements or ... or n elements.
Thus, $2^{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$. 䊅

Prove: $2^{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$
Proof (1): The number of subsets of $\{1,2, \ldots, n\}$ is 2^{n}. From that set we can choose 0 elements or 1 elements or ... or n elements.
Thus, $2^{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$. 㥹
Proof (2): Consider the identity, $(x+y)^{n}=\sum\binom{n}{i} x^{i} y^{n-i}$
Choose $x=y=1$. Now we have $(1+1)^{n}=\sum\binom{n}{i} 1^{i} 1^{n-i}$ or $2^{n}=\sum\binom{n}{i}$.
Thus, $2^{n}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n}$. 翻

There are n boys and n girls. We want to pick out n people. How many ways can we do this?

There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Lets ignore gender. Then we have a total of $2 n$ people.
So we have $\binom{2 n}{n}$ ways.

There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Lets ignore gender. Then we have a total of $2 n$ people.
So we have $\binom{2 n}{n}$ ways.
Option 2: We can pick 0 girls and n boys, 1 girl and $n-1$ boys, \ldots, n girls and 0 boys. So we have $\sum\binom{n}{i}^{2}$ ways.

There are n boys and n girls. We want to pick out n people. How many ways can we do this?

Option 1: Lets ignore gender. Then we have a total of $2 n$ people.
So we have $\binom{2 n}{n}$ ways.
Option 2: We can pick 0 girls and n boys, 1 girl and $n-1$ boys, \ldots, n girls and 0 boys. So we have $\sum\binom{n}{i}^{2}$ ways.

This is another identity: $\quad \sum\binom{n}{i}^{2}=\binom{2 n}{n}$

Combinatorial Identities

$$
\begin{aligned}
& \text { 1. }(x+y)^{n}=\sum\binom{n}{i}^{x, y^{n-i}} \\
& \text { 2. } \sum\binom{n}{i}^{2}=\binom{2 n}{n}
\end{aligned}
$$

