Combinatorial Identities

250H

Prove:
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$

Prove:
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$

Proof (1): The number of subsets of $\{1, 2, ..., n\}$ is 2^n . From that set we can choose 0

elements or 1 elements or ... or *n* elements.

Thus,
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$
. \circledast

Prove:
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$

Proof (1): The number of subsets of $\{1, 2, ..., n\}$ is 2^n . From that set we can choose 0

elements or 1 elements or ... or *n* elements.

Thus,
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$
. \circledast

Proof (2): Consider the identity, $(x + y)^n = \sum {n \choose i} x^i y^{n-i}$

Choose
$$x = y = 1$$
. Now we have $(1 + 1)^n = \sum {n \choose i} 1^i 1^{n-i}$ or $2^n = \sum {n \choose i}$.

Thus,
$$2^n = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n}$$
. *****

Option 1: Lets ignore gender. Then we have a total of 2*n* people.

So we have $\binom{2n}{n}$ ways.

Option 1: Lets ignore gender. Then we have a total of 2*n* people.

So we have $\binom{2n}{n}$ ways.

Option 2: We can pick 0 girls and *n* boys, 1 girl and *n*-1 boys, ..., *n* girls and 0 boys. So we have $\sum {n \choose i}^2$ ways.

Option 1: Lets ignore gender. Then we have a total of 2*n* people.

So we have $\binom{2n}{n}$ ways.

Option 2: We can pick 0 girls and *n* boys, 1 girl and *n*-1 boys, ..., *n* girls and *0* boys. So we have $\sum {n \choose i}^2$ ways.

This is another identity:
$$\sum {\binom{n}{i}}^2 = {\binom{2n}{n}}$$

Combinatorial Identities

$$1.\,(x+y)^n = \sum inom{n}{i} x^i y^{n-i}$$

$$2.\sum \binom{n}{i}^2 = \binom{2n}{n}$$