Cardinality of Sets

250

Motivation

- We defined the cardinality of a finite set as the number of elements in the set
\downarrow We use the cardinalities of finite sets to tell us when they have the same size, or when one is bigger than the other

Motivation

- We defined the cardinality of a finite set as the number of elements in the set
\downarrow We use the cardinalities of finite sets to tell us when they have the same size, or when one is bigger than the other

Motivation

- We are now going to extend this notion to infinite sets
$\stackrel{\text { We will define what it means for two infinite sets to have the same cardinality, }}{\text { d }}$ providing us with a way to measure the relative sizes of infinite sets.
- We will be particularly interested in countably infinite sets, which are sets with the same cardinality as the set of naturals
* These concepts have important applications to computer science
\diamond A function is called uncomputable if no computer program can be written to find all its values, even with unlimited time and memory

Cardinality

- Def: The sets A and B have the same cardinality if and only if there is a bijection from A to B. When A and B have the same cardinality, we write $|A|=|B|$.
- For infinite sets the definition of cardinality provides a relative measure of the sizes of two sets, rather than a measure of the size of one particular set
- Def: If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write $|A| \leq|B|$. Moreover, when $|A| \leq|B|$ and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write $|A|<|B|$.
- A set that is either finite or has the same cardinality as the set of naturals it is called countable.
- If A and B are countable sets, then $A \cup B$ is also countable.
- A set that is not countable is called uncountable.
- When an infinite set S is countable, we say it is countably infinite

Countable sets

Is there a bijection between \mathbf{N} and the set of odd positive integers?

Countable sets

Is there a bijection between \mathbf{N} and the set of odd positive integers?

1	2	3	4	5	6	7	8	9	10	11	12	\ldots
\uparrow												
1	3	5	7	9	11	13	15	17	19	21	23	\ldots

So the odds are a countably infinite set

Is the set of Integers countably infinite? Yes

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	\ldots
0	-1	1	-2	2	-3	3	-4	4	-5	5	-6	6	-7	7	-8	8	-9	9	\ldots

$$
f(n)= \begin{cases}0 & n=1 \\ -\frac{n}{2} & n=\text { odd } \\ \frac{(n-1)}{2} & n=\text { even }\end{cases}
$$

Is the set of Rationals Countably infinite? Yes

	1	2	3	4	5	6	7	\ldots
1	$1 / 1$	$2 / 1$	$3 / 1$	$4 / 1$	$5 / 1$	$6 / 1$	$7 / 1$	\ldots
2	$1 / 2$	$2 / 2$	$3 / 2$	$4 / 2$	$5 / 2$	$6 / 2$	$7 / 2$	\ldots
3	$1 / 3$	$2 / 3$	$3 / 3$	$4 / 3$	$5 / 3$	$6 / 3$	$7 / 3$	\ldots
4	$1 / 4$	$2 / 4$	$3 / 4$	$4 / 4$	$5 / 4$	$6 / 4$	$7 / 4$	\ldots
5	$1 / 5$	$2 / 5$	$3 / 5$	$4 / 5$	$5 / 5$	$6 / 5$	$7 / 5$	\ldots
6	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	$6 / 6$	$7 / 6$	\ldots
7	$1 / 7$	$2 / 7$	$3 / 7$	$4 / 7$	$5 / 7$	$6 / 7$	$7 / 7$	\ldots
\ldots								

Is the set of Reals countably infinite? NO

Proof: For the sake of contradiction assume the reals are countable. Then the subset of all real numbers that fall between 0 and 1 are also countable because any subset of a countable set is also countable. Let us list the reals between 0 and 1 in some order.

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
& r_{2}=0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} \cdots \\
& r_{4}=0 . d_{41} d_{42} d_{43} d_{44} \cdots
\end{aligned}
$$

where $\operatorname{dij} \in\{0,1,2,3,4,5,6,7,8,9\}$. Let us form a new real number with decimal expansion $r=d_{1} d_{2} d_{3} d_{4} \ldots$ where we follow this rule

Is the set of Reals countably infinite? NO

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} d_{14} \cdots \\
& r_{2}=0 . d_{21} d_{22} d_{23} d_{24} \cdots \\
& r_{3}=0 . d_{31} d_{32} d_{33} d_{34} \cdots \\
& r_{4}=0 . d_{41} d_{42} \mathrm{~d}_{43} \mathrm{~d}_{44} \cdots
\end{aligned}
$$

where $\operatorname{dij} \in\{0,1,2,3,4,5,6,7,8,9\}$. Let us form a new real number with decimal expansion $r=d_{1} d_{2} d_{3} d_{4} \ldots$ where we follow this rule

$$
d_{i}= \begin{cases}4 & d_{i i} \neq 4 \\ 5 & d_{i i}=4\end{cases}
$$

Every real number has a unique decimal expansion. Therefore our r is not equal to any of the previous r 's as he decimal expansion of differs from the decimal expansion of r_{i} in the ith place to the right of the decimal point, for each i.

Is the set of Reals countably infinite? NO

Every real number has a unique decimal expansion. Therefore our r is not equal to any of the previous r 's as he decimal expansion of differs from the decimal expansion of r_{i} in the ith place to the right of the decimal point, for each i. Since there is a real number between 0 and 1 that is not in the list we have a contradiction that the numbers between 0 and 1 cannot be listed. So the numbers between 0 and 1 are uncountable and any set with uncountables subsets is uncountable. So, the reals are uncountable. 』

Proving Infinite Sets

- To prove countably infinite, you would give the bijection
$\stackrel{\gamma}{ }$ OR to prove a set A is countable, you find a set B that we already know is Countable and show $A \subseteq B$.
- To prove uncountability infinite, you would use Cantor's diagonal argument
$\stackrel{\gamma}{ } \quad$ OR to prove a set A is uncountable, you find a set B that we already know is uncountable and show $B \subseteq A$.

