Cardinality of Sets

250

Motivation

- We defined the cardinality of a finite set as the number of elements in the set
- We use the cardinalities of finite sets to tell us when they have the same size, or when one is bigger than the other

Motivation

- We defined the cardinality of a finite set as the number of elements in the set
- We use the cardinalities of finite sets to tell us when they have the same size, or when one is bigger than the other

Motivation

- We are now going to extend this notion to infinite sets
 - We will define what it means for two infinite sets to have the same cardinality, providing us with a way to measure the relative sizes of infinite sets.
- We will be particularly interested in *countably infinite sets*, which are sets with the same cardinality as the set of naturals
- These concepts have important applications to computer science
 - A function is called uncomputable if no computer program can be written to find all its values, even with unlimited time and memory

Cardinality

- Def: The sets A and B have the same cardinality if and only if there is a bijection from A to B. When A and B have the same cardinality, we write |A|=|B|.
- For infinite sets the definition of cardinality provides a <u>relative</u> measure of the sizes of two sets, rather than a measure of the size of one particular set
- ◆ Def: If there is a one-to-one function from A to B, the cardinality of A is less than or the same as the cardinality of B and we write |A|≤|B|. Moreover, when |A|≤|B| and A and B have different cardinality, we say that the cardinality of A is less than the cardinality of B and we write |A| < |B|.
- A set that is either finite or has the same cardinality as the set of naturals it is called *countable*.
- ◆ If A and B are countable sets, then A \cup B is also countable.
- A set that is not countable is called **uncountable**.
- When an infinite set S is countable, we say it is countably infinite

Countable sets

Is there a bijection between **N** and the set of odd positive integers?

Countable sets

Is there a bijection between **N** and the set of odd positive integers?

1	2	3	4	5	6	7	8	9	10	11	12	
1	1	1	1	1	1	1	1	1	1	1	1	
1	3	5	7	9	11	13	15	17	19	21	23	

So the odds are a countably infinite set

Is the set of Integers countably infinite? Yes

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
0	-1	1	-2	2	-3	3	-4	4	-5	5	-6	6	-7	7	-8	8	-9	9	

$$f(n) \,= egin{cases} 0 & n \,=\, 1 \ -rac{n}{2} & n \,=\, odd \ rac{(n-1)}{2} & n \,=\, even \end{cases}$$

Is the set of Rationals Countably infinite? Yes

	1	2	3	4	5	6	7	
1	1/1	2/1	3/1	4/1	5/1	6/1	7/1	
2	1/2	2/2	3/2	4/2	5/2	6/2	7/2	
3	1/3	2/3	3/3	4/3	5/3	6/3	7/3	
4	1/4	2/4	3/4	4/4	5/4	6/4	7/4	
5	1/5	2/5	3/5	4/5	5/5	6/5	7/5	
6	1/6	2/6	3/6	4/6	5/6	6/6	7/6	
7	1/7	2/7	3/7	4/7	5/7	6/7	7/7	

Is the set of Reals countably infinite? NO

Proof: For the sake of contradiction assume the reals are countable. Then the subset of all real numbers that fall between 0 and 1 are also countable because any subset of a countable set is also countable. Let us list the reals between 0 and 1 in some order.

 $\begin{aligned} r_{1} &= 0.d_{11}d_{12}d_{13}d_{14}...\\ r_{2} &= 0.d_{21}d_{22}d_{23}d_{24}...\\ r_{3} &= 0.d_{31}d_{32}d_{33}d_{34}...\\ r_{4} &= 0.d_{41}d_{42}d_{43}d_{44}...\\ ..\end{aligned}$

where dij \in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let us form a new real number with decimal expansion r = d₁d₂d₃d₄... where we follow this rule

Is the set of Reals countably infinite? NO

$$r_{1} = 0.d_{11}d_{12}d_{13}d_{14}...$$

$$r_{2} = 0.d_{21}d_{22}d_{23}d_{24}...$$

$$r_{3} = 0.d_{31}d_{32}d_{33}d_{34}...$$

$$r_{4} = 0.d_{41}d_{42}d_{43}d_{44}...$$
:

where dij \in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let us form a new real number with decimal expansion r = d₁d₂d₃d₄... where we follow this rule

$$d_i \,=\, egin{cases} 4 & d_{ii} \,
eq 4 \ 5 & d_{ii} \,
eq 4 \ 5 & d_{ii} \,
eq 4 \end{cases}$$

Every real number has a unique decimal expansion. Therefore our r is not equal to any of the previous r's as he decimal expansion of differs from the decimal expansion of r_i in the ith place to the right of the decimal point, for each i.

Is the set of Reals countably infinite? NO

Every real number has a unique decimal expansion. Therefore our r is not equal to any of the previous r's as he decimal expansion of differs from the decimal expansion of r_i in the ith place to the right of the decimal point, for each i. Since there is a real number between 0 and 1 that is not in the list we have a contradiction that the numbers between 0 and 1 cannot be listed. So the numbers between 0 and 1 are uncountable and any set with uncountables subsets is uncountable. So, the reals are uncountable.

Proving Infinite Sets

- To prove countably infinite, you would give the bijection
 - ↔ OR to prove a set A is countable, you find a set B that we already know is Countable and show A ⊆ B.
- To prove uncountability infinite, you would use Cantor's diagonal argument
 - ♦ OR to prove a set A is uncountable, you find a set B that we already know is uncountable and show $B \subseteq A$.