Grid Colorings that Avoid Rectangles

May 3, 2024

Credit Where Credit is Due

This talk is based on a paper by
Stephen Fenner
William Gasarch
Charles Glover
Semmy Purewal

2-Coloring 3×9

2-Coloring 3×9

Is there a 2 -coloring of 3×9 with no mono rectangles?

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles?
What is a mono rectangle? Here is a an example:

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is a an example:

	\mathbf{R}					\mathbf{R}
	\mathbf{R}				\mathbf{R}	

2-Coloring 3×9 : Vote

2-Coloring 3×9 : Vote

Vote

2-Coloring 3×9 : Vote

Vote

1. There is a 2 -coloring of 3×9 with NO mono rectangles.

2-Coloring 3×9 : Vote

Vote

1. There is a 2 -coloring of 3×9 with NO mono rectangles.
2. All 2 -colorings of 3×9 have a mono rectangle.

2-Coloring 3×9 : Vote

Vote

1. There is a 2 -coloring of 3×9 with NO mono rectangles.
2. All 2 -colorings of 3×9 have a mono rectangle.
3. The problem is UNKNOWN TO SCIENCE.

2-Coloring 3×9 : Vote

Vote

1. There is a 2 -coloring of 3×9 with NO mono rectangles.
2. All 2 -colorings of 3×9 have a mono rectangle.
3. The problem is UNKNOWN TO SCIENCE.

Answer on the next slide.

All 2-colorings of 3×9 have a mono rectangle

Given a 2 -coloring of 3×9 look at each column.

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB.

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB. 8 possibilities.

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8 -coloring of the 9 columns.

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8 -coloring of the 9 columns.
So some column-color appears twice.

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column.
A column can either be RRR or RRB or \cdots or BBB.
8 possibilities.
Key: A 2-coloring of 3×9 is an 8 -coloring of the 9 columns.
So some column-color appears twice.
Example:

	\mathbf{R}				\mathbf{R}	
	\mathbf{B}				\mathbf{B}	
	\mathbf{R}				\mathbf{R}	

All 2-colorings of 3×9 have a mono rectangle

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB.
8 possibilities.
Key: A 2-coloring of 3×9 is an 8 -coloring of the 9 columns.
So some column-color appears twice.
Example:

Can easily show that the two repeat-columns lead to a mono rectangle.

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?
2. Is there a 2 -coloring of 3×7 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?
2. Is there a 2 -coloring of 3×7 with no mono rectangles?
3. Is there a 2 -coloring of 3×6 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?
2. Is there a 2 -coloring of 3×7 with no mono rectangles?
3. Is there a 2 -coloring of 3×6 with no mono rectangles?
4. Is there a 2 -coloring of 3×5 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?
2. Is there a 2 -coloring of 3×7 with no mono rectangles?
3. Is there a 2 -coloring of 3×6 with no mono rectangles?
4. Is there a 2 -coloring of 3×5 with no mono rectangles?
5. Is there a 2 -coloring of 3×4 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

Work in groups:

1. Is there a 2 -coloring of 3×8 with no mono rectangles?
2. Is there a 2 -coloring of 3×7 with no mono rectangles?
3. Is there a 2 -coloring of 3×6 with no mono rectangles?
4. Is there a 2 -coloring of 3×5 with no mono rectangles?
5. Is there a 2 -coloring of 3×4 with no mono rectangles?
6. Is there a 2 -coloring of 3×3 with no mono rectangles? YES:

Example:

R	B	\mathbf{R}
R	B	\mathbf{B}
R	R	\mathbf{B}

2-Coloring $3 \times 8,3 \times 7, \ldots$

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles?

2-Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles?

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles?

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles? YES

2-Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles? YES

R	R	R	B	B	B
R	B	B	R	B	R
B	R	B	B	R	R

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles? YES

R	R	R	B	B	B
R	B	B	R	B	R
B	R	B	B	R	R

4. Is there a 2-coloring of 3×5 with no mono rectangles? YES

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles? YES

R	R	R	B	B	B
R	B	B	R	B	R
B	R	B	B	R	R

4. Is there a 2-coloring of 3×5 with no mono rectangles? YES
5. Is there a 2 -coloring of 3×4 with no mono rectangles? YES

2 -Coloring $3 \times 8,3 \times 7, \ldots$

1. Is there a 2 -coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
2. Is there a 2 -coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col RRR OR BBB. Easily get mono rectangle.
3. Is there a 2 -coloring of 3×6 with no mono rectangles? YES

R	R	R	B	B	B
R	B	B	R	B	R
B	R	B	B	R	R

4. Is there a 2-coloring of 3×5 with no mono rectangles? YES
5. Is there a 2 -coloring of 3×4 with no mono rectangles? YES
6. Is there a 2-coloring of 3×3 with no mono rectangles? YES

2-Coloring 3×7 : Alt Proof

Diff proof that all 2 -col of 3×7 have mono rectangle.

2-Coloring 3×7 : Alt Proof

Diff proof that all 2 -col of 3×7 have mono rectangle.
Let COL be a 2 -coloring of 3×7. There are $3 \times 7=21$ squares so there must be ≥ 11 that are the same color, say \mathbf{R}.

2-Coloring 3×7 : Alt Proof

Diff proof that all 2 -col of 3×7 have mono rectangle.
Let COL be a 2 -coloring of 3×7. There are $3 \times 7=21$ squares so there must be ≥ 11 that are the same color, say \mathbf{R}.
Case 1 Some col is RRR. Then the other columns have to have $\leq 1 \mathrm{R}$ in them (or else you get a mono Rectangle). Total:
$3+1+1+1+1+1+1=9<11$.

2-Coloring 3×7 : Alt Proof

Diff proof that all 2 -col of 3×7 have mono rectangle.
Let COL be a 2 -coloring of 3×7. There are $3 \times 7=21$ squares so there must be ≥ 11 that are the same color, say \mathbf{R}.
Case 1 Some col is RRR. Then the other columns have to have $\leq 1 \mathrm{R}$ in them (or else you get a mono Rectangle). Total:
$3+1+1+1+1+1+1=9<11$.
Case $2 \leq 4$ cols have two R in them. Total: $\leq 2+2+2+2+1+1=10<11$.

2-Coloring 3×7 : Alt Proof

Diff proof that all 2 -col of 3×7 have mono rectangle.
Let COL be a 2 -coloring of 3×7. There are $3 \times 7=21$ squares so there must be ≥ 11 that are the same color, say \mathbf{R}.
Case 1 Some col is RRR. Then the other columns have to have $\leq 1 \mathbf{R}$ in them (or else you get a mono Rectangle). Total:
$3+1+1+1+1+1+1=9<11$.
Case $2 \leq 4$ cols have two R in them. Total:
$\leq 2+2+2+2+1+1=10<11$.
Case $3 \geq 5$ cols have two \mathbf{R} in them. Map each col to the $\{i, j\}$ such that it has \mathbf{R} in the i th and j th spot. Domain ≥ 5, range $\binom{3}{2}=3$ so two cols map to the same $\{i, j\}$. Get mono Rectangle.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.
- $6 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

$a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ unknown so far.
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.
- $6 \times b$ where $b \geq 7$ NOT 2-colorable.

Work on the $4 \times 4,4 \times 54 \times 6$.

4×6 IS 2-Colorable

R	R	R	B	B	B
R	B	B	R	R	B
B	R	B	R	B	R
B	B	R	B	R	R

What Do We Know?

What we know

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2 -colorable

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.
- $6 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ unknown so far.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 unknown so far.
- $6 \times b$ where $b \geq 7$ NOT 2-colorable.

Work on $5 \times 5,5 \times 6$.

5×5 IS NOT 2-Colorable!

Let COL be a 2 -coloring of 5×5.

5×5 IS NOT 2-Colorable!

Let COL be a 2 -coloring of 5×5.
Some color must occur ≥ 13 times.

Case 1: There is a column with 5 's

Case 1: There is a column with 5 R's.

\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ

Remaining columns have $\leq 1 \mathrm{R}$ so
Number of R's $\leq 5+1+1+1+1=9<13$.

Case 2: There is a column with 4 R's

Case 2: There is a column with $4 R$'s.

\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\mathbf{R}	\circ	\circ	\circ	\circ
\circ	\circ	0	\circ	\circ

Remaining columns have ≤ 2 R's
Number of R's $\leq 4+2+2+2+2 \leq 12<13$

Case 3: Max in a column is 3 R's

Case 3: Max in a column is 3 R's.
Case 3a: There are ≤ 2 columns with 3 R's.

Number of R's $\leq 3+3+2+2+2 \leq 12<13$.
Case 3b: There are ≥ 3 columns with $3 \mathrm{R}^{\prime} \mathrm{s}$.

Can't put in a third column with 3 R's!

Case 4: Max in a column is $\leq 2 R$'s

Case 4: Max in a column is ≤ 2 's.
Number of R's $\leq 2+2+2+2+2 \leq 10<13$.
No more cases. We are Done! Q.E.D.

What Do We Know?

What we know

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2 -colorable

What Do We Know?

What we know

- $2 \times b$ is always 2 -colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2 -colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ NOT 2-colorable.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2-colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ NOT 2-colorable.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 NOT 2 -colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2 -colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ NOT 2-colorable.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 NOT 2 -colorable.

We now know exactly what grids are 2-colorable.

What Do We Know?

What we know

- $2 \times b$ is always 2 -colorable
- $3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- $3 \times b$ where $b \geq 7$ NOT 2-colorable.
- $4 \times 4,4 \times 5,4 \times 6$ are 2-colorable
- $4 \times b$ where $b \geq 7$ NOT 2-colorable.
- $5 \times 5,5 \times 6$ NOT 2-colorable.
- $5 \times b$ where $b \geq 7$ NOT 2-colorable.
- 6×6 NOT 2 -colorable.

We now know exactly what grids are 2-colorable.
Can we say it more succinctly?

Obstruction Sets

Def $n \times m$ contains $a \times b$ if $a \leq n$ and $b \leq m$.
Thm For all c there exists a unique finite set of grids OBS_{c} such that
$n \times m$ is c-colorable iff
$n \times m$ does not contain any element of OBS_{c}.

Obstruction Sets

Def $n \times m$ contains $a \times b$ if $a \leq n$ and $b \leq m$.
Thm For all c there exists a unique finite set of grids OBS_{c} such that
$n \times m$ is c-colorable iff
$n \times m$ does not contain any element of OBS_{c}.

1. $\mathrm{OBS}_{2}=\{3 \times 7,7 \times 3,5 \times 5\}$.

Obstruction Sets

Def $n \times m$ contains $a \times b$ if $a \leq n$ and $b \leq m$.
Thm For all c there exists a unique finite set of grids OBS_{c} such that
$n \times m$ is c-colorable iff
$n \times m$ does not contain any element of OBS_{c}.

1. $\mathrm{OBS}_{2}=\{3 \times 7,7 \times 3,5 \times 5\}$.
2. Can prove Thm using well-quasi-orderings. No bound on $\left|\mathrm{OBS}_{c}\right|$.

Obstruction Sets

Def $n \times m$ contains $a \times b$ if $a \leq n$ and $b \leq m$.
Thm For all c there exists a unique finite set of grids OBS_{c} such that
$n \times m$ is c-colorable iff
$n \times m$ does not contain any element of OBS_{c}.

1. $\mathrm{OBS}_{2}=\{3 \times 7,7 \times 3,5 \times 5\}$.
2. Can prove Thm using well-quasi-orderings. No bound on $\left|\mathrm{OBS}_{c}\right|$.
3. We showed $2 \sqrt{c}(1-o(1)) \leq\left|\mathrm{OBS}_{c}\right| \leq 2 c^{2}$.

Main Question

Fix c
 What is OBS_{c}

Main Question

Fix c What is OBS_{c}

We developed tools to get us both colorings and non-colorings. They helped us get some of our results, but (alas) to many had to be done ad-hoc.

3-COLORABILITY

We will EXACTLY Characterize which $n \times m$ are 3-colorable!

Easy 3-Colorable Results

Thm

1. The following grids are not 3 -colorable.

$$
4 \times 19,19 \times 4,5 \times 16,16 \times 5,7 \times 13,13 \times 7,10 \times 12
$$

$12 \times 10,11 \times 11$.
2. The following grids are 3 -colorable.

$$
3 \times 19,19 \times 3,4 \times 18,18,6 \times 15,15 \times 6,9 \times 12,12 \times 9
$$

Follows from tools.

10×10 is 3 -colorable

Thm 10×10 is 3 -colorable.
UGLY! TOOLS DID NOT HELP AT ALL!!

R	R	R	R	B	B	G	G	B	G
R	B	B	G	R	R	R	G	G	B
G	R	B	G	R	B	B	R	R	G
G	B	R	B	B	R	G	R	G	R
R	B	G	G	G	B	G	B	R	R
G	R	B	B	G	G	R	B	B	R
B	G	R	B	G	B	R	G	R	B
B	B	G	R	R	G	B	G	B	R
G	G	G	R	B	R	B	B	R	B
B	G	B	R	B	G	R	R	G	G

10×11 is not 3 -colorable

Thm 10×11 is not 3 -colorable.
You don't want to see this. UGLY case hacking.

Complete Char of 3-colorability

Thm $\mathrm{OBS}_{3}=$

$$
\{4 \times 19,5 \times 16,7 \times 13,10 \times 11,11 \times 10,13 \times 7,16 \times 5,19 \times 4\}
$$

Follows from our tools and the ad-hoc results.

4-COLORABILITY

From now on $G_{a, b}$ is $a \times b$.
We will EXACTLY Characterize which $G_{n, m}$ are 4-colorable!

Easy NOT 4-Colorable Results

Thm The following grids are NOT 4-colorable:

1. $G_{5,41}$ and $G_{41,5}$
2. $G_{6,31}$ and $G_{31,6}$
3. $G_{7,29}$ and $G_{29,7}$
4. $G_{9,25}$ and $G_{25,9}$
5. $G_{10,23}$ and $G_{23,10}$
6. $G_{11,22}$ and $G_{22,11}$
7. $G_{13,21}$ and $G_{21,13}$
8. $G_{17,20}$ and $G_{20,17}$
9. $G_{18,19}$ and $G_{19,18}$

Easy NOT 4-Colorable Results

Thm The following grids are NOT 4-colorable:

1. $G_{5,41}$ and $G_{41,5}$
2. $G_{6,31}$ and $G_{31,6}$
3. $G_{7,29}$ and $G_{29,7}$
4. $G_{9,25}$ and $G_{25,9}$
5. $G_{10,23}$ and $G_{23,10}$
6. $G_{11,22}$ and $G_{22,11}$
7. $G_{13,21}$ and $G_{21,13}$
8. $G_{17,20}$ and $G_{20,17}$
9. $G_{18,19}$ and $G_{19,18}$

Follows from our tools.

Easy IS 4-Colorable Results

Thm The following grids are 4-colorable:

1. $G_{4,41}$ and $G_{41,4}$.
2. $G_{5,40}$ and $G_{40,5}$.
3. $G_{6,30}$ and $G_{30,6}$.
4. $G_{8,28}$ and $G_{28,8}$.
5. $G_{16,20}$ and $G_{20,16}$.

Easy IS 4-Colorable Results

Thm The following grids are 4-colorable:

1. $G_{4,41}$ and $G_{41,4}$.
2. $G_{5,40}$ and $G_{40,5}$.
3. $G_{6,30}$ and $G_{30,6}$.
4. $G_{8,28}$ and $G_{28,8}$.
5. $G_{16,20}$ and $G_{20,16}$.

Follows from our tools.

Theorems with UGLY Proofs

Thm

1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.
2. $G_{24,9}$ is 4-colorable: Some Tools, Some ad-hoc.

Theorems with UGLY Proofs

Thm

1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.
2. $G_{24,9}$ is 4-colorable: Some Tools, Some ad-hoc.

4-coloring of $G_{21,11}$ Due to Brad Loren

	1	2	3	4	5	6	7	8	9	10	11
1	G	B	B	G	R	P	R	G	P	B	P
2	B	G	G	P	B	G	P	R	R	B	R
3	R	R	B	P	B	P	B	P	G	G	R
4	P	R	P	G	B	B	R	P	R	G	B
5	R	P	G	B	B	P	P	B	R	G	G
6	B	R	P	R	G	P	B	R	G	P	B
7	P	G	B	R	G	B	R	G	P	P	R
8	P	P	G	B	R	B	G	R	G	B	P
9	R	B	R	B	G	G	R	P	P	G	B
10	R	P	P	R	G	R	B	B	P	B	G
11	B	P	R	R	P	B	G	G	R	P	G
12	R	B	P	P	P	B	B	R	G	R	G
13	G	G	B	B	R	R	P	P	R	P	G
14	G	B	R	P	B	G	G	R	B	P	P
15	G	P	G	P	G	R	R	R	B	B	B
16	B	B	R	G	P	G	P	B	P	R	G
17	P	G	B	G	P	P	R	B	G	R	B
18	B	P	B	G	G	R	G	P	B	R	R
19	P	G	R	P	R	B	G	B	B	G	R
20	B	R	P	B	R	G	P	G	G	R	P
G	R	B	P	R	B	P	G	P			

4-coloring of $G_{22,10}$ Due to Brad Loren

	1	2	3	4	5	6	7	8	9	10
1	P	G	R	R	G	G	P	P	B	B
2	G	P	B	G	B	B	P	R	P	R
3	B	G	B	R	P	P	G	R	P	B
4	P	P	G	G	R	R	B	B	G	P
5	P	B	P	P	G	R	R	G	G	R
6	P	B	R	B	R	P	G	R	G	G
7	G	P	G	P	B	P	R	B	R	G
8	P	R	R	B	P	B	G	G	B	R
9	P	B	B	R	R	G	R	G	P	G
10	R	R	B	B	P	G	R	B	G	P
11	R	G	G	P	R	B	B	G	P	R
12	R	B	R	G	G	P	P	B	B	G
13	B	R	G	B	G	R	B	R	P	P
14	G	G	P	B	B	P	R	R	G	B
15	R	G	P	R	B	R	B	P	P	G
16	B	B	P	G	P	B	P	G	R	R
17	G	P	B	R	P	G	B	P	B	R
18	R	B	G	P	B	G	P	R	R	P
19	G	B	R	P	P	R	B	G	R	B
20	B	R	P	G	R	G	G	B	R	P
21	B	R	G	R	B	P	G	P	B	P
22	G	P	P	R	G	B	G	B	R	B

Absolute Results

Thm

1. The following grids are in $\mathrm{OBS}_{4}: G_{5,41}, G_{6,31}, G_{7,29}, G_{9,25}$, $G_{10,23}, G_{11,22}, G_{22,11}, G_{23,10}, G_{25,9}, G_{29,7}, G_{31,6}, G_{41,5}$.
2. For each of the following grids it is not known if it is 4-colorable. These are the only such. $G_{17,17}, G_{17,18}, G_{18,17}$, $G_{18,18} . G_{21,12}, G_{22,10}$.
3. Exactly one of these is in $O B S_{4}: G_{21,11}, G_{21,12}$.
4. Exactly one of these is in $O B S_{4}$: $G_{17,19}, G_{17,18}, G_{17,17}$.
5. If $G_{19,17} \in \mathrm{OBS}_{4}$ then it is possible that $G_{18,18} \in \mathrm{OBS}_{4}$.

Rectangle Free Conjecture

The following is obvious:
Lemma Let $n, m, c \in \mathrm{~N}$. If $G_{n, m}$ is c-colorable then some color occurs $\geq\lceil n m / c\rceil$ times. Hence there is a rectangle free subset of $G_{n, m}$ with $\geq\lceil n m / c\rceil$ elements.

Rectangle Free Conjecture

The following is obvious:
Lemma Let $n, m, c \in \mathrm{~N}$. If $G_{n, m}$ is c-colorable then some color occurs $\geq\lceil n m / c\rceil$ times. Hence there is a rectangle free subset of $G_{n, m}$ with $\geq\lceil n m / c\rceil$ elements.
Rectangle-Free Conjecture (RFC) is the converse:
Let $n, m, c \geq 2$. If there is a rectangle free subset of size of $G_{n, m}$ which is $\geq\lceil n m / c\rceil$ then $G_{n, m}$ is c-colorable.

Rectangle Free Subset of $G_{22,10}$ of Size of size

$55=\left\lceil\frac{22 \cdot 10}{4}\right\rceil$

	01	02	03	04	05	06	07	08	09	10
1	\bullet						\bullet			
2		\bullet					\bullet			
3			\bullet				\bullet			
4				\bullet			\bullet			
5					\bullet		\bullet			
6						\bullet	\bullet			
7	\bullet	\bullet						\bullet		
8			\bullet	\bullet				\bullet		
9					\bullet	\bullet		\bullet		
10		\bullet	\bullet						\bullet	
11				\bullet	\bullet				\bullet	
12	\bullet					\bullet			\bullet	
13	\bullet			\bullet						\bullet
14		\bullet				\bullet				\bullet
15			\bullet		\bullet					\bullet
16		\bullet			\bullet					
17	\bullet		\bullet							
18				\bullet		\bullet				
19			\bullet			\bullet				
20		\bullet		\bullet						
21	\bullet				\bullet					
22							\bullet	\bullet	\bullet	\bullet

If RFC is true then $G_{22,10}$ is 4-colorable.

Rectangle Free subset of $G_{21,12}$ of size $63=\left\lceil\frac{21 \cdot 12}{4}\right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12
1	-	-										
2	-		-									
3		-	-									
4			-	-	-							
5		\bullet		-		-						
6	-				-	-						
7						-	-	-				
8					-		-		-			
9				-				\bullet	-			
10						-				-	-	
11					-					-		-
12				-							-	-
13			-			-			-			-
14			\bullet					-		-		
15			-				-				-	
16		-							-	-		
17		-			-			-			-	
18		-					-					-
19	-								-		-	
20	-							-				-
21	-			-			-			-		

If RFC is true then $G_{21,12}$ is 4-colorable.

Rectangle Free subset of $G_{18,18}$ of size $81=\left\lceil\frac{18 \cdot 18}{4}\right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
1		-		\bullet										\bullet		\bullet	\bullet	
2	-	-								-	-		-					
3	-								-						-	-		-
4						-			-			-	-	-				
5		-	-			-												-
6	-			-		-	-											
7							-	-		-				-				-
8			-				-		-		-						-	
9		-			-		-					-			-			
10				-							-	-						-
11	-		-		\bullet									-				
12			-	-				-					-		-			
13					-	-		-			-					-		
14	-							-				-					-	
15				-	\bullet				\bullet	-								
16						-				-					-		-	
17			-							-		-				-		
18					-								-				-	-

If RFC is true then $G_{18,18}$ is 4 -colorable. NOTE: If delete 2 nd column and 5 th Row have 74 -sized RFC of $G_{17,17}$.

Assuming RFC...

Thm If RFC then
$\mathrm{OBS}_{4}=\left\{G_{41,5}, G_{31,6}, G_{29,7}, G_{25,9}, G_{23,10}, G_{22,11}, G_{21,13}, G_{19,17}\right\} \bigcup$

$$
\left\{G_{13,21}, G_{11,22}, G_{10,23}, G_{9,25}, G_{7,29}, G_{6,31}, G_{5,41}\right\}
$$

Follows from known 4-colorability, non-4-colorability results, and Rect Free Sets above.

CASH PRIZE!

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive $\$ 289.00$.

CASH PRIZE!

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive $\$ 289.00$.

Also want to know about 18×18.

CASH PRIZE!

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive $\$ 289.00$.

Also want to know about 18×18.
Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and are $\$ 289$ richer!

CASH PRIZE!

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive $\$ 289.00$.

Also want to know about 18×18.
Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and are $\$ 289$ richer!

So OBS_{4} is known!

OPEN QUESTIONS

1. What is OBS_{5} ?
2. Prove or disprove Rectangle Free Conjecture.
3. Have $\Omega(\sqrt{c}) \leq\left|\mathrm{OBS}_{c}\right| \leq O\left(c^{2}\right)$. Get better bounds!
4. Refine tools so can prove ugly results cleanly.
