Grid Colorings that Avoid Rectangles

May 3, 2024

Credit Where Credit is Due

This talk is based on a paper by Stephen Fenner William Gasarch Charles Glover Semmy Purewal

2-Coloring 3×9

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles?

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is a an example:

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is a an example:

R			R	
R			R	

Vote

Vote

1. There is a 2-coloring of 3×9 with NO mono rectangles.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.

Answer on the next slide.

Given a 2-coloring of 3×9 look at each column.

Given a 2-coloring of 3×9 look at each column. A column can either be RRR or RRB or \cdots or BBB.

Given a 2-coloring of 3×9 look at each column. A column can either be **RRR** or **RRB** or \cdots or **BBB**. 8 possibilities.

Given a 2-coloring of 3×9 look at each column. A column can either be **RRR** or **RRB** or \cdots or **BBB**. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

Given a 2-coloring of 3×9 look at each column. A column can either be **RRR** or **RRB** or ··· or **BBB**. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns. So some column-color appears twice.

Given a 2-coloring of 3×9 look at each column. A column can either be **RRR** or **RRB** or \cdots or **BBB**. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Given a 2-coloring of 3×9 look at each column. A column can either be **RRR** or **RRB** or \cdots or **BBB**. 8 possibilities.

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Can easily show that the two repeat-columns lead to a mono rectangle.

Work in groups:

1. Is there a 2-coloring of 3×8 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?

Work in groups:

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES:

Example:

R	В	R
R	В	В
R	R	В

1. Is there a 2-coloring of 3×8 with no mono rectangles?

1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col **RRR**. Easily get mono rectangle.

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- 2. Is there a 2-coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col **RRR** OR **BBB**. Easily get mono rectangle.

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

4. Is there a 2-coloring of 3×5 with no mono rectangles? YES

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

- 4. Is there a 2-coloring of 3×5 with no mono rectangles? YES
- 5. Is there a 2-coloring of 3×4 with no mono rectangles? YES

2-Coloring 3×8 , 3×7 , ...

- 1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col RRR. Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col RRR OR BBB.
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

- 4. Is there a 2-coloring of 3×5 with no mono rectangles? YES
- 5. Is there a 2-coloring of 3×4 with no mono rectangles? YES
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES

Diff proof that all 2-col of 3×7 have mono rectangle.

Diff proof that all 2-col of 3×7 have mono rectangle. Let ${\rm COL}$ be a 2-coloring of 3×7 . There are $3\times 7=21$ squares so there must be ≥ 11 that are the same color, say ${\bf R}$.

Diff proof that all 2-col of 3×7 have mono rectangle. Let ${\rm COL}$ be a 2-coloring of 3×7 . There are $3\times 7=21$ squares so there must be ≥ 11 that are the same color, say ${\bf R}$.

Case 1 Some col is RRR. Then the other columns have to have ≤ 1 R in them (or else you get a mono Rectangle). Total: 3+1+1+1+1+1+1=9<11.

Diff proof that all 2-col of 3×7 have mono rectangle. Let COL be a 2-coloring of 3×7 . There are $3\times 7=21$ squares so there must be ≥ 11 that are the same color, say R.

Case 1 Some col is **RRR**. Then the other columns have to have ≤ 1 **R** in them (or else you get a mono Rectangle). Total: 3+1+1+1+1+1+1=9<11.

Case 2 \leq 4 cols have two **R** in them. Total: $\leq 2 + 2 + 2 + 2 + 1 + 1 = 10 < 11$.

Diff proof that all 2-col of 3×7 have mono rectangle. Let COL be a 2-coloring of 3×7 . There are $3 \times 7 = 21$ squares so there must be ≥ 11 that are the same color, say \mathbf{R} .

Case 1 Some col is RRR. Then the other columns have to have ≤ 1 R in them (or else you get a mono Rectangle). Total: 3+1+1+1+1+1+1=9<11.

Case $2 \le 4$ cols have two R in them. Total:

$$\leq 2+2+2+2+1+1=10 < 11.$$

Case $3 \ge 5$ cols have two $\mathbf R$ in them. Map each col to the $\{i,j\}$ such that it has $\mathbf R$ in the ith and jth spot. Domain ≥ 5 , range $\binom{3}{2} = 3$ so two cols map to the same $\{i,j\}$. Get mono Rectangle.

 $a \times b$ is *2-colorable* if there is a 2-coloring with no mono rectangles. What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

 $a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on the 4×4 , 4×5 4×6 .

4×6 IS 2-Colorable

What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on 5×5 , 5×6 .

5×5 IS NOT 2-Colorable!

Let COL be a 2-coloring of $5\times5.$

5×5 IS NOT 2-Colorable!

Let COL be a 2-coloring of 5×5 . Some color must occur ≥ 13 times.

Case 1: There is a column with 5 R's

Case 1: There is a column with 5 R's.

$$\mathbf{R}$$
 \circ \circ \circ

$$\mathbf{R}$$
 \circ \circ \circ

$$\mathbf{R}$$
 o o o o

Remaining columns have $\leq 1 R$ so

Number of R's
$$\leq 5 + 1 + 1 + 1 + 1 = 9 < 13$$
.

Case 2: There is a column with 4 R's

Case 2: There is a column with 4 R's.

Remaining columns have $\leq 2 \text{ R's}$

Number of R's
$$\leq 4 + 2 + 2 + 2 + 2 \leq 12 < 13$$

Case 3: Max in a column is 3 R's

Case 3: Max in a column is 3 R's.

Case 3a: There are ≤ 2 columns with 3 R's.

Number of
$$R's \le 3 + 3 + 2 + 2 + 2 \le 12 < 13$$
.

Case 3b: There are ≥ 3 columns with 3 R's.

Can't put in a third column with 3 R's!

Case 4: Max in a column is $\leq 2R$'s

Case 4: Max in a column is $\leq 2R$'s.

Number of R's
$$\leq 2 + 2 + 2 + 2 + 2 \leq 10 < 13$$
.

No more cases. We are Done! Q.E.D.

What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 4×4 , 4×5 , 4×6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know exactly what grids are 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know *exactly* what grids are 2-colorable. Can we say it more succinctly?

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$. **Thm** For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable **iff** $n \times m$ does not contain any element of OBS_c.

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

1.
$$OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$$

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

- 1. $OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$
- 2. Can prove Thm using well-quasi-orderings. No bound on $|OBS_c|$.

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Thm For all c there exists a unique finite set of grids OBS_c such that

 $n \times m$ is c-colorable iff

 $n \times m$ does not contain any element of OBS_c .

- 1. $OBS_2 = \{3 \times 7, 7 \times 3, 5 \times 5\}.$
- 2. Can prove Thm using well-quasi-orderings. No bound on $|OBS_c|$.
- 3. We showed $2\sqrt{c}(1-o(1)) \le |OBS_c| \le 2c^2$.

Main Question

Fix c What is OBS_c

Main Question

Fix c What is OBS_c

We developed tools to get us both colorings and non-colorings. They helped us get some of our results, but (alas) to many had to be done ad-hoc.

3-COLORABILITY

We will **EXACTLY** Characterize which $n \times m$ are 3-colorable!

Easy 3-Colorable Results

Thm

- 1. The following grids are not 3-colorable. 4×19 , 19×4 , 5×16 , 16×5 , 7×13 , 13×7 , 10×12 , 12×10 , 11×11 .
- 2. The following grids are 3-colorable. $3\times19,\ 19\times3,\ 4\times18,\ 18,\ 6\times15,\ 15\times6,\ 9\times12,\ 12\times9.$

Follows from tools.

10×10 is 3-colorable

Thm 10×10 is 3-colorable. UGLY! TOOLS DID NOT HELP AT ALL!!

R	R	R	R	В	В	G	G	В	G
R	В	В	G	R	R	R	G	G	В
G	R	В	G	R	В	В	R	R	G
G	В	R	В	В	R	G	R	G	R
R	В	G	G	G	В	G	В	R	R
G	R	В	В	G	G	R	В	В	R
В	G	R	В	G	В	R	G	R	В
В	В	G	R	R	G	В	G	В	R
G	G	G	R	В	R	В	В	R	В
В	G	В	R	В	G	R	R	G	G

10×11 is not 3-colorable

Thm 10×11 is not 3-colorable. You don't want to see this. UGLY case hacking.

Complete Char of 3-colorability

Thm
$$OBS_3 =$$

$$\{4 \times 19, 5 \times 16, 7 \times 13, 10 \times 11, 11 \times 10, 13 \times 7, 16 \times 5, 19 \times 4\}$$

Follows from our tools and the ad-hoc results.

4-COLORABILITY

From now on $G_{a,b}$ is $a \times b$.

We will **EXACTLY** Characterize which $G_{n,m}$ are 4-colorable!

Easy NOT 4-Colorable Results

Thm The following grids **are** NOT 4-colorable:

- 1. $G_{5,41}$ and $G_{41,5}$
- 2. $G_{6,31}$ and $G_{31,6}$
- 3. $G_{7,29}$ and $G_{29,7}$
- 4. $G_{9,25}$ and $G_{25,9}$
- 5. $G_{10,23}$ and $G_{23,10}$
- 6. $G_{11,22}$ and $G_{22,11}$
- 7. $G_{13,21}$ and $G_{21,13}$
- 8. $G_{17,20}$ and $G_{20,17}$
- 9. $G_{18,19}$ and $G_{19,18}$

Easy NOT 4-Colorable Results

Thm The following grids **are** NOT 4-colorable:

- 1. $G_{5,41}$ and $G_{41,5}$
- 2. $G_{6,31}$ and $G_{31,6}$
- 3. $G_{7,29}$ and $G_{29,7}$
- 4. $G_{9,25}$ and $G_{25,9}$
- 5. $G_{10,23}$ and $G_{23,10}$
- 6. $G_{11,22}$ and $G_{22,11}$
- 7. $G_{13,21}$ and $G_{21,13}$
- 8. $G_{17,20}$ and $G_{20,17}$
- 9. $G_{18,19}$ and $G_{19,18}$

Follows from our tools.

Easy IS 4-Colorable Results

Thm The following grids **are** 4-colorable:

- 1. $G_{4,41}$ and $G_{41,4}$.
- 2. $G_{5,40}$ and $G_{40,5}$.
- 3. $G_{6,30}$ and $G_{30,6}$.
- 4. $G_{8,28}$ and $G_{28,8}$.
- 5. $G_{16,20}$ and $G_{20,16}$.

Easy IS 4-Colorable Results

Thm The following grids are 4-colorable:

- 1. $G_{4,41}$ and $G_{41,4}$.
- 2. $G_{5,40}$ and $G_{40,5}$.
- 3. $G_{6,30}$ and $G_{30,6}$.
- 4. $G_{8,28}$ and $G_{28,8}$.
- 5. $G_{16,20}$ and $G_{20,16}$.

Follows from our tools.

Theorems with UGLY Proofs

Thm

- 1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.
- 2. $G_{24,9}$ is 4-colorable: Some Tools, Some ad-hoc.

Theorems with UGLY Proofs

Thm

- 1. $G_{17,19}$ is NOT 4-colorable: Some Tools, Some ad-hoc.
- 2. $G_{24,9}$ is 4-colorable: Some Tools, Some ad-hoc.

4-coloring of $G_{21,11}$ Due to Brad Loren

```
5
                       6
                                      10
                                          11
           В
                          R
    В
                   В
                          В
                                          R
        R
               G
                   В
                       В
                          R
                                          В
                   В
                              В
                                          G
    В
        R
                   G
                          В
                                          В
        G
                   G
                       В
                                          R
        Ρ
               В
                   R
                       В
                   G
        В
               В
                                          В
10
        Ρ
               R
                   G
                          В
                                          G
11
    В
        Ρ
               R
                   Ρ
                       В
                                          G
12
                                          G
13
    G
        G
                                  R
                                          G
           В
               В
14
    G
        В
           R
                   В
                       G
                                  В
15
                   G
                                          В
16
        В
               G
                       G
                                          G
17
        G
           В
                          R
                                          В
               G
18
           В
                   G
19
        G
                                          R
                       В
20
                       G
                       R
                          В
```

4-coloring of $G_{22,10}$ Due to Brad Loren

```
5
                       6
                                       10
                   G
                                   В
                                       В
2
            В
                   В
                       В
    В
        G
4
        В
                   G
        В
                В
                   R
    G
                   В
                       В
                       G
        В
            В
                   R
10
                       G
11
                   R
                           В
12
                   G
13
                   G
    В
                В
                           В
14
        G
                   В
                В
                           R
        G
15
                   В
                           В
16
                       В
17
                       G
                           В
18
                   В
                       G
        В
19
        В
            R
                       R
                           B
20
21
```

Absolute Results

Thm

- 1. The following grids are in OBS₄: $G_{5,41}$, $G_{6,31}$, $G_{7,29}$, $G_{9,25}$, $G_{10,23}$, $G_{11,22}$, $G_{22,11}$, $G_{23,10}$, $G_{25,9}$, $G_{29,7}$, $G_{31,6}$, $G_{41,5}$.
- 2. For each of the following grids it is not known if it is 4-colorable. These are the only such. $G_{17,17}$, $G_{17,18}$, $G_{18,17}$, $G_{18,18}$. $G_{21,12}$, $G_{22,10}$.
- 3. Exactly one of these is in OBS_4 : $G_{21,11}$, $G_{21,12}$.
- **4**. Exactly one of these is in OBS_4 : $G_{17,19}$, $G_{17,18}$, $G_{17,17}$.
- 5. If $G_{19,17} \in OBS_4$ then it is possible that $G_{18,18} \in OBS_4$.

Rectangle Free Conjecture

The following is obvious:

Lemma Let $n, m, c \in \mathbb{N}$. If $G_{n,m}$ is c-colorable then some color occurs $\geq \lceil nm/c \rceil$ times. Hence there is a rectangle free subset of $G_{n,m}$ with $\geq \lceil nm/c \rceil$ elements.

Rectangle Free Conjecture

The following is obvious:

Lemma Let $n, m, c \in \mathbb{N}$. If $G_{n,m}$ is c-colorable then some color occurs $\geq \lceil nm/c \rceil$ times. Hence there is a rectangle free subset of $G_{n,m}$ with $\geq \lceil nm/c \rceil$ elements.

Rectangle-Free Conjecture (RFC) is the converse:

Let $n, m, c \ge 2$. If there is a rectangle free subset of size of $G_{n,m}$ which is $\ge \lceil nm/c \rceil$ then $G_{n,m}$ is c-colorable.

Rectangle Free Subset of $G_{22,10}$ of Size of size

$$55 = \left\lceil \frac{22 \cdot 10}{4} \right\rceil$$

	01	02	03	04	05	06	07	08	09	10
1	•						•			
2		•					•			
3			•				•			
4				•			•			
5					•		•			
6						•	•			
7	•	•						•		
8			•	•				•		
9					•	•		•		
10		•	•						•	
11				•	•				•	
12	•					•			•	
13	•			•						•
14		•				•				•
15			•		•					•
16		•			•					
17	•		•							
18				•		•				
19			•			•				
20		•		•						
21	•				•					
22							•	•	•	•

If RFC is true then $G_{22,10}$ is 4-colorable.

Rectangle Free subset of $G_{21,12}$ of size $63 = \left\lceil \frac{21 \cdot 12}{4} \right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12
1	•	•										
2	•		•									
3		•	•									
4			•	•	•							
5		•		•		•						
6	•				•	•						
7						•	•	•				
8					•		•		•			
9				•				•	•			
10						•				•	•	
11					•					•		•
12				•							•	•
13			•			•			•			•
14			•					•		•		
15			•				•				•	
16		•							•	•		
17		•			•			•			•	
18		•					•					•
19	•								•		•	
20	•							•				•
21	•			•			•			•		

If RFC is true then $G_{21,12}$ is 4-colorable.

Rectangle Free subset of $G_{18,18}$ of size $81 = \left\lceil \frac{18 \cdot 18}{4} \right\rceil$

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18
1		•		•										•		•	•	
2	•	•								•	•		•					
3	•								•						•	•		•
4						•			•			•	•	•				
5		•	•			•												•
6	•			•		•	•											
7							•	•		•				•				•
8			•				•		•		•						•	
9		•			•		•					•			•			
10				•							•	•						•
11	•		•		•									•				
12			•	•				•					•		•			
13					•	•		•			•					•		
14	•							•				•					•	
15				•	•				•	•								
16						•				•					•		•	
17			•							•		•				•		
18					•								•				•	•

If RFC is true then $G_{18,18}$ is 4-colorable. NOTE: If delete 2nd column and 5th Row have 74-sized RFC of $G_{17,17}$.

Assuming RFC...

Thm If RFC then

$$\mathrm{OBS_4} = \{\textit{G}_{41,5}, \textit{G}_{31,6}, \textit{G}_{29,7}, \textit{G}_{25,9}, \textit{G}_{23,10}, \textit{G}_{22,11}, \textit{G}_{21,13}, \textit{G}_{19,17}\}\bigcup$$

$$\{\textit{G}_{13,21},\textit{G}_{11,22},\textit{G}_{10,23},\textit{G}_{9,25},\textit{G}_{7,29},\textit{G}_{6,31},\textit{G}_{5,41}\}.$$

Follows from known 4-colorability, non-4-colorability results, and Rect Free Sets above.

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and are \$289 richer!

On Nov 30, 209 I posted a blog with the following offer: The first person to email me both (1) plaintext, and (2) LaTeX, of a 4-coloring of the 17×17 grid that has no monochromatic rectangles will receive \$289.00.

Also want to know about 18×18 .

Bernd Steinbach and Christian Postoff showed both $G_{18,18}$ is 4-colorable and are \$289 richer!

So OBS₄ is known!

OPEN QUESTIONS

- 1. What is OBS_5 ?
- 2. Prove or disprove Rectangle Free Conjecture.
- 3. Have $\Omega(\sqrt{c}) \leq |\mathrm{OBS}_c| \leq O(c^2)$. Get better bounds!
- 4. Refine tools so can prove **ugly** results **cleanly**.