Horse Numbers

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.
$H(0)=1$ by convention.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.
$H(0)=1$ by convention. $H(1)=1$ clearly.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.
$H(0)=1$ by convention. $H(1)=1$ clearly.
Examples Horses are x_{1}, x_{2}.

1. 2 horses: $x_{1}<x_{2}$ OR $x_{2}<x_{1}$ OR $x_{1}=x_{2} . H(2)=3$.

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.
$H(0)=1$ by convention. $H(1)=1$ clearly.
Examples Horses are x_{1}, x_{2}.

1. 2 horses: $x_{1}<x_{2}$ OR $x_{2}<x_{1}$ OR $x_{1}=x_{2} . H(2)=3$.
2. Three horses. Work on it!

Definition of Horse Numbers

Recall If n horses run in a race then the number of ways they can finish is $n!$.

Not Quite Horses can tie.
Due $H(n)$ is the number of ways n horse can finish a race.
$H(0)=1$ by convention. $H(1)=1$ clearly.
Examples Horses are x_{1}, x_{2}.

1. 2 horses: $x_{1}<x_{2}$ OR $x_{2}<x_{1}$ OR $x_{1}=x_{2} . H(2)=3$.
2. Three horses. Work on it!

Answer on next slide.

Three Horses

Three Horses

$$
x_{1}<x_{2}<x_{3} \quad x_{1}<x_{3}<x_{2} \quad x_{1}<x_{2}=x_{3}
$$

Three Horses

$$
\begin{array}{lll}
x_{1}<x_{2}<x_{3} & x_{1}<x_{3}<x_{2} & x_{1}<x_{2}=x_{3} \\
x_{2}<x_{1}<x_{3} & x_{2}<x_{3}<x_{1} & x_{2}<x_{3}=x_{1}
\end{array}
$$

Three Horses

$$
\begin{array}{lll}
x_{1}<x_{2}<x_{3} & x_{1}<x_{3}<x_{2} & x_{1}<x_{2}=x_{3} \\
x_{2}<x_{1}<x_{3} & x_{2}<x_{3}<x_{1} & x_{2}<x_{3}=x_{1} \\
x_{3}<x_{1}<x_{2} & x_{3}<x_{2}<x_{1} & x_{3}<x_{2}=x_{1}
\end{array}
$$

Three Horses

$$
\begin{array}{lll}
x_{1}<x_{2}<x_{3} & x_{1}<x_{3}<x_{2} & x_{1}<x_{2}=x_{3} \\
x_{2}<x_{1}<x_{3} & x_{2}<x_{3}<x_{1} & x_{2}<x_{3}=x_{1} \\
x_{3}<x_{1}<x_{2} & x_{3}<x_{2}<x_{1} & x_{3}<x_{2}=x_{1} \\
x_{1}=x_{2}<x_{3} & x_{1}=x_{3}<x_{2} & x_{2}=x_{3}<x_{1}
\end{array}
$$

Three Horses

$$
\begin{array}{lll}
x_{1}<x_{2}<x_{3} & x_{1}<x_{3}<x_{2} & x_{1}<x_{2}=x_{3} \\
x_{2}<x_{1}<x_{3} & x_{2}<x_{3}<x_{1} & x_{2}<x_{3}=x_{1} \\
x_{3}<x_{1}<x_{2} & x_{3}<x_{2}<x_{1} & x_{3}<x_{2}=x_{1} \\
x_{1}=x_{2}<x_{3} & x_{1}=x_{3}<x_{2} & x_{2}=x_{3}<x_{1} \\
x_{1}=x_{2}=x_{3} & &
\end{array}
$$

Three Horses

$$
\begin{array}{lll}
x_{1}<x_{2}<x_{3} & x_{1}<x_{3}<x_{2} & x_{1}<x_{2}=x_{3} \\
x_{2}<x_{1}<x_{3} & x_{2}<x_{3}<x_{1} & x_{2}<x_{3}=x_{1} \\
x_{3}<x_{1}<x_{2} & x_{3}<x_{2}<x_{1} & x_{3}<x_{2}=x_{1} \\
x_{1}=x_{2}<x_{3} & x_{1}=x_{3}<x_{2} & x_{2}=x_{3}<x_{1} \\
x_{1}=x_{2}=x_{3} & & \\
H(3)=13 & &
\end{array}
$$

Four Horses

Work on it

Four Horses

Work on it
Answer on next slide.

Four Horses: Answer in a Way That Can Generalize

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\left.\begin{array}{l}4 \\ 2\end{array}\right) H(2)$

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\left.\begin{array}{l}4 \\ 2\end{array}\right) H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$
4. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$
4. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Total:

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$
4. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Total:

$$
\binom{4}{1} H(3)+\binom{4}{2} H(2)+\binom{4}{3} H(1)+\binom{4}{4} H(0)=75
$$

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$
4. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Total:

$$
\binom{4}{1} H(3)+\binom{4}{2} H(2)+\binom{4}{3} H(1)+\binom{4}{4} H(0)=75
$$

Can write in a nicer way for summations:

Four Horses: Answer in a Way That Can Generalize

1. Pick one of $x_{1}, x_{2}, x_{3}, x_{4}$ to be unique min: $\binom{4}{1}$. Order the 3 horses left: $H(3)$. Total: $\binom{4}{1} H(3)$
2. Pick two of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{2}$. Order the 2 horses left: $H(2)$. Total: $\binom{4}{2} H(2)$
3. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{3}$. Order the 1 horses left: $H(1)$. Total: $\binom{4}{3} H(1)$
4. Pick three of $x_{1}, x_{2}, x_{3}, x_{4}$ to be only mins: $\binom{4}{4}$. Order the 0 horses left: $H(0)$. Total: $\binom{4}{4} H(0)$

Total:

$$
\binom{4}{1} H(3)+\binom{4}{2} H(2)+\binom{4}{3} H(1)+\binom{4}{4} H(0)=75
$$

Can write in a nicer way for summations:

$$
\binom{4}{0} H(0)+\binom{4}{1} H(1)+\binom{4}{2} H(2)+\binom{4}{3} H(3)=75
$$

n Horses

$H(n)$:

n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the only min: $\binom{n}{i}=\binom{n}{n-i}$.

n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the only $\min :\binom{n}{i}=\binom{n}{n-i}$.
Order the remaining $n-i$ horses: $H(n-i)$.

n Horses

$H(n)$:
For $1 \leq i \leq n$, choose i horses to be the only min: $\binom{n}{i}=\binom{n}{n-i}$.
Order the remaining $n-i$ horses: $H(n-i)$.

$$
H(n)=\sum_{i=1}^{n}\binom{n}{n-i} H(n-i)=\sum_{i=0}^{n-1}\binom{n}{i} H(i)
$$

