Homework 10

250H Spr 2024

Sandwich: Egg Salad OR Tuna Fish OR Cheese. Fruit: Apple OR Orange OR Grapes OR Blueberries OR

Strawberries.

Desert: Apple Sauce OR Cookie.

- How many ways can Bill make lunch for his Gnilrad?

$$
\text { - } \quad 3 \times 5 \times 2=30
$$

- One day she complains: I don't want to have my Fruit be an apple, and my desert be Applesauce. Bill obeys her wishes. Now how many ways can Bill make lunch for her?

$$
\text { - } \quad 30-3=27
$$

- One day she complains: I don't want to have my Fruit be an apple, and my desert be Applesauce AND I want 2 Sandwiches AND I want 3 Fruits. I still just want one Desert. Bill obeys her wishes. Now how many ways can Bill make lunch for her?
- $\binom{3}{2} \times\binom{ 5}{3} \times 2-\binom{3}{2}=3 \times 10-3=57$

What if the following hold

- Each A_{i} has x_{1} elements.
- Each intersection of TWO sets has x_{2} elements.
- Each intersection of THREE sets has x_{3} elements.
- Each intersection of FOUR sets has x_{4} elements.

Give an expression for $l A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \mid$ in terms of $x_{1}, x_{2}, x_{3}, x_{4}$. It should be much simpler then the general law.
$4 x_{1}-6 x_{2}+4 x_{3}-x_{4}$.

Let A_{1}, \ldots, A_{n} be sets. Assume that, for $1 \leq i \leq n$, the intersection of i of these sets has size x_{i}. Give an expression for $\left|A_{1} \cup \ldots \cup A_{n}\right|$ in terms of x_{1}, \ldots, x_{n}. You CANNOT use DOT DOT DOT. You can and should use a summation sign.

$$
\sum_{i=1}^{n}(-1)^{i+1}\binom{n}{i} x_{i}
$$

How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=100$
with $x_{1} \geq 1, x_{2} \geq 2, x_{3} \geq 3$, and $x_{4} \geq 4$.
100-1-2-3-4 = 90 stars
We have 3 bars, so
$\binom{90+4-1}{4-1}=\binom{93}{3}$

