Small Ramsey Numbers

Exposition by William Gasarch

April 30, 2024

FILL OUT YOUR EVALS FOR ALL YOUR COURSES

You have been emailed to fill out teaching evals of all of your teachers.

FILL OUT YOUR EVALS FOR ALL YOUR COURSES

You have been emailed to fill out teaching evals of all of your teachers.
Please do this!

FILL OUT YOUR EVALS FOR ALL YOUR COURSES

You have been emailed to fill out teaching evals of all of your teachers.
Please do this!

1. Used by teachers to improve their teaching. I use them.

FILL OUT YOUR EVALS FOR ALL YOUR COURSES

You have been emailed to fill out teaching evals of all of your teachers.
Please do this!

1. Used by teachers to improve their teaching. I use them.
2. Used by the chair of the Teach Eval Comm to help others with their teaching. I have been that chair.

FILL OUT YOUR EVALS FOR ALL YOUR COURSES

You have been emailed to fill out teaching evals of all of your teachers.
Please do this!

1. Used by teachers to improve their teaching. I use them.
2. Used by the chair of the Teach Eval Comm to help others with their teaching. I have been that chair.
3. Used by the Dept to put together teaching reports for faculty for tenure and full prof cases. I have written such reports.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

Lets Party Like Its January of 2019

Recall the first theorem one usually hears in Ramsey Theory and can tell your non-math friends about.

If there are 6 people at a party, either 3 know each other or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K_{6} there is a mono K_{3}.

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

There are 5 edges coming out of vertex 1 .

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

There are 5 edges coming out of vertex 1 . They are 2 colored.

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

There are 5 edges coming out of vertex 1 . They are 2 colored.
$\exists 3$ edges from vertex 1 that are the same color.

Focus on Vertex 1

Given a 2-coloring of the edges of K_{6} we look at vertex 1 .

There are 5 edges coming out of vertex 1 . They are 2 colored.
$\exists 3$ edges from vertex 1 that are the same color.
We can assume $(1,2),(1,3),(1,4)$ are all RED.

$(1,2),(1,3),(1,4)$ are RED

We Look Just at Vertices 1,2,3,4

We Look Just at Vertices $1,2,3,4$

If $(2,3)$ is RED then get RED Triangle. So assume $(2,3)$ is BLUE.

$(2,3)$ is BLUE

$(2,3)$ is BLUE

$(2,3)$ is BLUE

If $(3,4)$ is RED then get RED triangle. So assume $(3,4)$ is BLUE.

$(2,3)$ and $(3,4)$ are BLUE

$(2,3)$ and $(3,4)$ are BLUE

$(2,3)$ and $(3,4)$ are BLUE

If $(2,4)$ is RED then get RED triangle. So assume $(2,4)$ is BLUE.

$(2,4)$ is BLUE

$(2,4)$ is BLUE

$(2,4)$ is BLUE

Note that there is a BLUE triangle with vertices 2, 3, 4. Done!

What if we color edges of K_{5} ?

What if we color edges of K_{5} ?

This graph is not arbitrary.
$S Q_{5}=\left\{x^{2}(\bmod 5): 0 \leq x \leq 4\right\}=\{0,1,4\}$.

- If $i-j \in S Q_{5}$ then RED.
- If $i-j \notin S Q_{5}$ then BLUE.

Asymmetric Ramsey Numbers

Definition $R(a, b)$ is least n such that for all 2-colorings of K_{n} there is either a red K_{a} or a blue K_{b}.

1. $R(a, b)=R(b, a)$.
2. $R(2, b)=b$
3. $R(a, 2)=a$

$R(a, b) \leq R(a-1, b)+R(a, b-1)$

Theorem $R(a, b) \leq R(a-1, b)+R(a, b-1)$
Proof
Let $n=R(a-1, b)+R(a, b-1)$. COL: $\binom{[n]}{2} \rightarrow[2]$.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq R(a-1, b)\right]$. Look at the $R(a-1, b)$ vertices that are RED to v. By Definition of $R(a-1, b)$ either

- There is a RED K_{a-1}. Combine with v to get RED K_{a}.
- There is a BLUE K_{b}.

$R(a, b) \leq R(a-1, b)+R(a, b-1)$

Theorem $R(a, b) \leq R(a-1, b)+R(a, b-1)$
Proof
Let $n=R(a-1, b)+R(a, b-1)$. COL: $\binom{[n]}{2} \rightarrow[2]$.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq R(a-1, b)\right]$. Look at the $R(a-1, b)$ vertices that are RED to v. By Definition of $R(a-1, b)$ either

- There is a RED K_{a-1}. Combine with v to get RED K_{a}.
- There is a BLUE K_{b}.

Case $2(\exists v)\left[\operatorname{deg}_{B}(v) \geq R(a, b-1)\right]$. Similar to Case 1 .

$R(a, b) \leq R(a-1, b)+R(a, b-1)$

Theorem $R(a, b) \leq R(a-1, b)+R(a, b-1)$
Proof
Let $n=R(a-1, b)+R(a, b-1)$. COL: $\binom{[n]}{2} \rightarrow[2]$.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq R(a-1, b)\right]$. Look at the $R(a-1, b)$ vertices that are RED to v. By Definition of $R(a-1, b)$ either

- There is a RED K_{a-1}. Combine with v to get RED K_{a}.
- There is a BLUE K_{b}.

Case $2(\exists v)\left[\operatorname{deg}_{B}(v) \geq R(a, b-1)\right]$. Similar to Case 1 .
Case 3
$(\forall v)\left[\operatorname{deg}_{R}(v) \leq R(a-1, b)-1 \wedge \operatorname{deg}_{B}(v) \leq R(a, b-1)-1\right]$
$(\forall v)[\operatorname{deg}(v) \leq R(a-1, b)+R(a, b-1)-2=n-2]$
Not possible since every vertex of K_{n} has degree $n-1$.

Lets Compute Bounds on $R(a, b)$

- $R(3,3) \leq R(2,3)+R(3,2) \leq 3+3=6$
- $R(3,4) \leq R(2,4)+R(3,3) \leq 4+6=10$
- $R(3,5) \leq R(2,5)+R(3,4) \leq 5+10=15$
- $R(3,6) \leq R(2,6)+R(3,5) \leq 6+15=21$
- $R(3,7) \leq R(2,7)+R(3,6) \leq 7+21=28$

Lets Compute Bounds on $R(a, b)$

- $R(3,3) \leq R(2,3)+R(3,2) \leq 3+3=6$
- $R(3,4) \leq R(2,4)+R(3,3) \leq 4+6=10$
- $R(3,5) \leq R(2,5)+R(3,4) \leq 5+10=15$
- $R(3,6) \leq R(2,6)+R(3,5) \leq 6+15=21$
- $R(3,7) \leq R(2,7)+R(3,6) \leq 7+21=28$

Can we make some improvements to this?

Lets Compute Bounds on $R(a, b)$

- $R(3,3) \leq R(2,3)+R(3,2) \leq 3+3=6$
- $R(3,4) \leq R(2,4)+R(3,3) \leq 4+6=10$
- $R(3,5) \leq R(2,5)+R(3,4) \leq 5+10=15$
- $R(3,6) \leq R(2,6)+R(3,5) \leq 6+15=21$
- $R(3,7) \leq R(2,7)+R(3,6) \leq 7+21=28$

Can we make some improvements to this? YES!

$R(3,4) \leq 9$

Theorem $R(3,4) \leq 9$.
Let $C O L$ be a 2 -coloring of the edges of K_{9}. Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq 4\right] . v_{1}, v_{2}, v_{3}, v_{4}$ are RED to v.

$R(3,4) \leq 9$

Theorem $R(3,4) \leq 9$.
Let $C O L$ be a 2 -coloring of the edges of K_{9}.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq 4\right] . v_{1}, v_{2}, v_{3}, v_{4}$ are RED to v. If any of v_{i}, v_{j} is RED, then v, v_{i}, v_{j} are RED K_{3}.

$R(3,4) \leq 9$

Theorem $R(3,4) \leq 9$.
Let $C O L$ be a 2 -coloring of the edges of K_{9}.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq 4\right] . v_{1}, v_{2}, v_{3}, v_{4}$ are RED to v.
If any of v_{i}, v_{j} is RED, then v, v_{i}, v_{j} are RED K_{3}.
If not then $v_{1}, v_{2}, v_{3}, v_{4}$ is BLUE K_{4}.

$R(3,4) \leq 9$

Theorem $R(3,4) \leq 9$.
Let $C O L$ be a 2 -coloring of the edges of K_{9}.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq 4\right] . v_{1}, v_{2}, v_{3}, v_{4}$ are RED to v.
If any of v_{i}, v_{j} is RED, then v, v_{i}, v_{j} are RED K_{3}.
If not then $v_{1}, v_{2}, v_{3}, v_{4}$ is BLUE K_{4}.
Case $2(\exists v)\left[\operatorname{deg}_{B}(v) \geq 6\right] . v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are BLUE to v.
Either:
(1) a RED K_{3}, or
(2) a BLUE K_{3}, which together with v is a BLUE K_{4}.

NOTE Can't have any $\operatorname{deg}_{R}(v) \leq 2$.

$R(3,4) \leq 9$

Theorem $R(3,4) \leq 9$.
Let $C O L$ be a 2 -coloring of the edges of K_{9}.
Case $1(\exists v)\left[\operatorname{deg}_{R}(v) \geq 4\right] . v_{1}, v_{2}, v_{3}, v_{4}$ are RED to v.
If any of v_{i}, v_{j} is RED, then v, v_{i}, v_{j} are RED K_{3}.
If not then $v_{1}, v_{2}, v_{3}, v_{4}$ is BLUE K_{4}.
Case $2(\exists v)\left[\operatorname{deg}_{B}(v) \geq 6\right] . v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ are BLUE to v.
Either:
(1) a RED K_{3}, or
(2) a BLUE K_{3}, which together with v is a BLUE K_{4}.

NOTE Can't have any $\operatorname{deg}_{R}(v) \leq 2$.
Case $3(\forall v)\left[\operatorname{deg}_{R}(v)=3\right]$. The RED subgraph has 9 nodes each of degree 3. Impossible!

Reminder of the Odd Vertex Things

Lemma Let $G=(V, E)$ be a graph.

$$
\left.\left.\begin{array}{rl}
V_{\text {even }} & =\{v: \operatorname{deg}(v) \equiv 0 \\
V_{\text {odd }} & =\{v: \operatorname{deg}(v) \equiv 1
\end{array} \quad(\bmod 2)\right\},\right\}
$$

Then $\left|V_{\text {odd }}\right| \equiv 0(\bmod 2)$.

Reminder of the Odd Vertex Things

Lemma Let $G=(V, E)$ be a graph.

$$
\begin{aligned}
V_{\text {even }} & =\{v: \operatorname{deg}(v) \equiv 0 \\
V_{\text {odd }} & =\{v: \bmod 2)\} \\
v(\operatorname{deg}(v) \equiv 1 & (\bmod 2)\}
\end{aligned}
$$

Then $\left|V_{\text {odd }}\right| \equiv 0(\bmod 2)$.
Recall that for any graph $G=(V, E)$:
$\sum_{v \in V_{\text {even }}} \operatorname{deg}(v)+\sum_{v \in V_{\text {odd }}} \operatorname{deg}(v)=\sum_{v \in V} \operatorname{deg}(v)=2|E| \equiv 0 \quad(\bmod 2)$.

Reminder of the Odd Vertex Things

Lemma Let $G=(V, E)$ be a graph.

$$
\begin{aligned}
V_{\text {even }} & =\{v: \operatorname{deg}(v) \equiv 0 \quad(\bmod 2)\} \\
V_{\text {odd }} & =\{v: \operatorname{deg}(v) \equiv 1 \quad(\bmod 2)\}
\end{aligned}
$$

Then $\left|V_{\text {odd }}\right| \equiv 0(\bmod 2)$.
Recall that for any graph $G=(V, E)$:
$\sum_{v \in V_{\text {even }}} \operatorname{deg}(v)+\sum_{v \in V_{\text {odd }}} \operatorname{deg}(v)=\sum_{v \in V} \operatorname{deg}(v)=2|E| \equiv 0 \quad(\bmod 2)$.

$$
\sum_{v \in V_{\text {odd }}} \operatorname{deg}(v) \equiv 0 \quad(\bmod 2)
$$

Reminder of the Odd Vertex Things

Lemma Let $G=(V, E)$ be a graph.

$$
\begin{aligned}
V_{\text {even }} & =\{v: \operatorname{deg}(v) \equiv 0 \\
V_{\text {odd }} & =\{v: \bmod 2)\} \\
v(\operatorname{deg}(v) \equiv 1 & (\bmod 2)\}
\end{aligned}
$$

Then $\left|V_{\text {odd }}\right| \equiv 0(\bmod 2)$.
Recall that for any graph $G=(V, E)$:
$\sum_{v \in V_{\text {even }}} \operatorname{deg}(v)+\sum_{v \in V_{\text {odd }}} \operatorname{deg}(v)=\sum_{v \in V} \operatorname{deg}(v)=2|E| \equiv 0 \quad(\bmod 2)$.

$$
\sum_{v \in V_{\text {odd }}} \operatorname{deg}(v) \equiv 0 \quad(\bmod 2)
$$

Sum of odds $\equiv 0(\bmod 2)$. Must have even numb of them. So $\left|V_{\text {odd }}\right| \equiv 0(\bmod 2)$.

A Generalization of this Trick

What was it about $R(3,4)$ that made that trick work?

A Generalization of this Trick

What was it about $R(3,4)$ that made that trick work?
We originally had

$$
R(3,4) \leq R(2,4)+R(3,3) \leq 4+6 \leq 10
$$

A Generalization of this Trick

What was it about $R(3,4)$ that made that trick work?
We originally had

$$
R(3,4) \leq R(2,4)+R(3,3) \leq 4+6 \leq 10
$$

Key: $R(2,4)$ and $R(3,3)$ were both even!

A Generalization of this Trick

What was it about $R(3,4)$ that made that trick work?
We originally had

$$
R(3,4) \leq R(2,4)+R(3,3) \leq 4+6 \leq 10
$$

Key: $R(2,4)$ and $R(3,3)$ were both even!
Theorem $R(a, b) \leq$

1. $R(a, b-1)+R(a-1, b)$ always.
2. $R(a, b-1)+R(a-1, b)-1$ if $R(a, b-1) \equiv R(a-1, b) \equiv 0(\bmod 2)$

Some Better Upper Bounds

- $R(3,3) \leq R(2,3)+R(3,2) \leq 3+3=6$.
- $R(3,4) \leq R(2,4)+R(3,3) \leq 4+6-1=9$.
- $R(3,5) \leq R(2,5)+R(3,4) \leq 5+9=14$.
- $R(3,6) \leq R(2,6)+R(3,5) \leq 6+14-1=19$.
- $R(3,7) \leq R(2,7)+R(3,6) \leq 7+19=26$
- $R(4,4) \leq R(3,4)+R(4,3) \leq 9+9=18$.
- $R(4,5) \leq R(3,5)+R(4,4) \leq 14+18-1=31$.
- $R(5,5) \leq R(4,5)+R(5,4)=62$.

Are these tight?

$R(3,3) \geq 6$

$R(3,3) \geq 6$: Need coloring of $K_{5} \mathrm{w} / \mathrm{o}$ mono K_{3}.

$R(3,3) \geq 6$

$R(3,3) \geq 6$: Need coloring of $K_{5} \mathrm{w} / \mathrm{o}$ mono K_{3}.
Vertices are $\{0,1,2,3,4\}$.

$R(3,3) \geq 6$

$R(3,3) \geq 6$: Need coloring of $K_{5} \mathrm{w} / \mathrm{o}$ mono K_{3}.
Vertices are $\{0,1,2,3,4\}$.
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv S Q(\bmod 5)$, BLUE OW.

$R(3,3) \geq 6$

$R(3,3) \geq 6$: Need coloring of $K_{5} \mathrm{w} / \mathrm{o}$ mono K_{3}.
Vertices are $\{0,1,2,3,4\}$.
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv S Q(\bmod 5)$, BLUE OW.
Note $-1=2^{2}(\bmod 5)$. Hence $a-b \in S Q$ iff $b-a \in S Q$. So the coloring is well defined.

$R(3,3) \geq 6$

$\operatorname{COL}(a, b)=$ RED if $a-b \equiv S Q(\bmod 5)$, BLUE OW.

- Squares $\bmod 5: 1,4$.
- If there is a RED triangle then $a-b, b-c, c-a$ all SQ's. SUM is 0 . So

$$
x^{2}+y^{2}+z^{2} \equiv 0 \quad(\bmod 5) \text { Can show impossible }
$$

- If there is a BLUE triangle then $a-b, b-c, c-a$ all non-SQ's. Product of nonsq's is a sq. So $2(a-b), 2(b-c), 2(c-a)$ all squares. SUM to zero- same proof.
UPSHOT $R(3,3)=6$ and the coloring used math of interest!

$R(4,4)=18$

$R(4,4) \geq 18$: Need coloring of $K_{17} \mathrm{w} / \mathrm{o}$ mono K_{4}.

$R(4,4)=18$

$R(4,4) \geq 18$: Need coloring of $K_{17} \mathrm{w} / \mathrm{o}$ mono K_{4}.
Vertices are $\{0, \ldots, 16\}$.
Use
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv S Q(\bmod 17)$, BLUE OW.

$R(4,4)=18$

$R(4,4) \geq 18$: Need coloring of $K_{17} \mathrm{w} / \mathrm{o}$ mono K_{4}.
Vertices are $\{0, \ldots, 16\}$.
Use
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv S Q(\bmod 17)$, BLUE OW.
Same idea as above for K_{5}, but more cases. UPSHOT $R(4,4)=18$ and the coloring used math of interest!

$R(3,5)=14$

$R(3,5) \geq 14$: Need coloring of $K_{13} \mathrm{w} / \mathrm{o}$ RED K_{3} or BLUE K_{5}.

$R(3,5)=14$

$R(3,5) \geq 14$: Need coloring of $K_{13} w / o$ RED K_{3} or BLUE K_{5}.
Vertices are $\{0, \ldots, 13\}$.
Use
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv C U B E(\bmod 14)$, BLUE OW.

$R(3,5)=14$

$R(3,5) \geq 14$: Need coloring of $K_{13} w / o$ RED K_{3} or BLUE K_{5}.
Vertices are $\{0, \ldots, 13\}$.
Use
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv \operatorname{CUBE}(\bmod 14)$, BLUE OW.
Same idea as above for K_{5}, but more cases.

$R(3,5)=14$

$R(3,5) \geq 14$: Need coloring of $K_{13} w / o$ RED K_{3} or BLUE K_{5}.
Vertices are $\{0, \ldots, 13\}$.
Use
$\operatorname{COL}(a, b)=$ RED if $a-b \equiv \operatorname{CUBE}(\bmod 14)$, BLUE OW.
Same idea as above for K_{5}, but more cases.
UPSHOT $R(3,5)=14$ and the coloring used math of interest!

$R(3,4)=9$

This is a subgraph of the $R(3,5)$ graph

$R(3,4)=9$

This is a subgraph of the $R(3,5)$ graph
UPSHOT $R(3,4)=9$ and the coloring used math of interest!

Can we extend these Patterns?

Good news $R(4,5)=25$.

Can we extend these Patterns?

Good news $R(4,5)=25$.
Bad news

Can we extend these Patterns?

Good news $R(4,5)=25$.
Bad news
THATS IT.

Can we extend these Patterns?

Good news $R(4,5)=25$.
Bad news
THATS IT.
No other $R(a, b)$ are known using NICE methods.

Can we extend these Patterns?

Good news $R(4,5)=25$.
Bad news
THATS IT.
No other $R(a, b)$ are known using NICE methods.
$R(5,5)$ - I will give you a paper to read on that soon.

Revisit those Numbers

Int means Interesting Math. Bor means Boring Math.

- $R(3,3) \leq 6$. TIGHT. Int
- $R(3,4) \leq 9$. TIGHT. Int
- $R(3,5) \leq 14$. TIGHT. Int
- $R(3,6) \leq 19$. KNOWN: 18. Upper Bd Bor, Lower Bd Int
- $R(3,7) \leq 26$. KNOWN: 23. Upper Bd Bor, Lower Bd Int
- $R(4,4) \leq 18$. TIGHT. Int
- $R(4,5) \leq 31$. KNOWN: 25. Both bd Bor
- $R(5,5) \leq 62$. KNOWN: Will see it in the paper I give out.

Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.

Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs.
(Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.

Moral of the Story

1. At first there seemed to be interesting mathematics with mods and primes leading to nice graphs. (Joel Spencer) The Law of Small Numbers: Patterns that persist for small numbers will vanish when the calculations get to hard.
2. Seemed like a nice Math problem that would involve interesting and perhaps deep mathematics. No. The work on it is interesting and clever, but (1) the math is not deep, and (2) progress is slow.
