The Table Problem

$$
\text { 4ロ〉4岛 }>4 \text { 三 }
$$

True Story

The following people had dinner together in a restaurant:

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

How did they sit?

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

How did they sit?

1. Bill \& Darling ACROSS. On the LEFT END of the table.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

How did they sit?

1. Bill \& Darling ACROSS. On the LEFT END of the table.
2. Peg \& Ted NEXT. Ted on her right; Bill on her right.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

How did they sit?

1. Bill \& Darling ACROSS. On the LEFT END of the table.
2. Peg \& Ted NEXT. Ted on her right; Bill on her right.
3. Jane \& Jon NEXT. Jon on her left; Jon NEXT to Darling.

True Story

The following people had dinner together in a restaurant:

1. Bill and his Darling.
2. Peggy and her husband Ted.
3. Jane and her husband Jon.

How did they sit?

1. Bill \& Darling ACROSS. On the LEFT END of the table.
2. Peg \& Ted NEXT. Ted on her right; Bill on her right.
3. Jane \& Jon NEXT. Jon on her left; Jon NEXT to Darling.

Draw on the board.

Bill Asks the Waitress the Following Questions

Bill Asks the Waitress the Following Questions

1. How many ways can the six of us sit if everyone is either ACROSS FROM or NEXT TO their significant other?

Bill Asks the Waitress the Following Questions

1. How many ways can the six of us sit if everyone is either ACROSS FROM or NEXT TO their significant other?
2. If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?

Bill Asks the Waitress the Following Questions

1. How many ways can the six of us sit if everyone is either ACROSS FROM or NEXT TO their significant other?
2. If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?
Work on this in groups.

Bill Asks the Waitress the Following Questions

1. How many ways can the six of us sit if everyone is either ACROSS FROM or NEXT TO their significant other?
2. If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?
Work on this in groups.
Answer on the NEXT slide.

Answer in Parts

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles?

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? n !.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? n !.
3. For each tile/couple determine who sits where.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? n !.
3. For each tile/couple determine who sits where. 2^{n}.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? $n!$.
3. For each tile/couple determine who sits where. 2^{n}.

Waitress: Answer is $A(n) n!2^{n}$ and

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? n !.
3. For each tile/couple determine who sits where. 2^{n}.

Waitress: Answer is $A(n) n!2^{n}$ and
I will figure out $A(n)$ on NEXT break.

Answer in Parts

1. Need Number of ways to tile $2 \times n$ with 1×2 tiles. This is number of ways to set up ACROSS -NEXT stuff. We call this $A(n)$. We figure this one out on NEXT slide.
2. How many ways can you assign n couples to n tiles? n !.
3. For each tile/couple determine who sits where. 2^{n}.

Waitress: Answer is $A(n) n!2^{n}$ and I will figure out $A(n)$ on NEXT break.
She was a Math PhD students who was waitressing to pick up some extra cash.

Lets Figure out $A(n)$

After her break the waitress showed me the following

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's?

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other. The rest of the tiling can be done $A(n-1)$ ways.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other. The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other. The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other. The rest of the tiling can be done $A(n-2)$ ways.

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other. The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other. The rest of the tiling can be done $A(n-2)$ ways.
$A(1)=1$

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other. The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other. The rest of the tiling can be done $A(n-2)$ ways.
$A(1)=1$
$A(2)=2$

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other.
The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other. The rest of the tiling can be done $A(n-2)$ ways.
$A(1)=1$
$A(2)=2$
$A(n)=A(n-1)+A(n-2)$

Lets Figure out $A(n)$

After her break the waitress showed me the following
$A(1)=1$. Show on board.
$A(2)=2$. Show on board.
Can we get $A(n)$ in terms of prior A 's? Yes.
Case 1 Left end has one couple, ACROSS from each other.
The rest of the tiling can be done $A(n-1)$ ways.
Case 2 Left end has two couples, both are NEXT to each other. The rest of the tiling can be done $A(n-2)$ ways.
$A(1)=1$
$A(2)=2$
$A(n)=A(n-1)+A(n-2)$
So $A(n)=F(n)$, the Fib Numbers!

The Final Answer

The waitress told me:

The Final Answer

The waitress told me:
If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?

The Final Answer

The waitress told me:
If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?

$$
2^{n} n!F(n) .
$$

The Final Answer

The waitress told me:
If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?

$$
2^{n} n!F(n) .
$$

Peg and Jane said Is that a lot?

The Final Answer

The waitress told me:
If n couples go into a restaurant and sit at a rectangular table. How many ways can the n couples sit if everyone is either ACROSS FROM or NEXT TO their significant other?

$$
2^{n} n!F(n) .
$$

Peg and Jane said Is that a lot?
Darling said Uh. . . Yes.

