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Use induction to prove that bn = 3n -1 for all n ≥ 1.

Base case: Let n = 1. Then bn = 31 -1 = 2. So, this base case holds. 

Inductive Hypothesis: Assume for some k ≥ 1,  bk = 3k - 1.

Inductive Step: Let n = k+1. Then,

bk+1 = 3bk + 2

By our IH,

3bk + 2 = 3(3k - 1) + 2

= 3k+1- 3 + 2

= 3k+1 - 1.

Therefore, by PMI our statement holds. ☽
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Prove that a2 − 1 is divisible by 8 for all positive odd integers a.

Base case: Let a ≡ 1. Then 12 - 1 = 0 mod 8. So, this base case holds. 

Inductive Hypothesis: Assume for some odd integer k ≥ 1,  k2 - 1 ≡ 0 mod 8.

Inductive Step: Let a = k+2. Then,

a2 - 1 = (k+2)2 - 1

= (k2 + 4k + 4) - 1

= (k2 - 1) + 4k + 4

By our IH,

≡ (0) + 4k + 4 mod 8



Prove that a2 − 1 is divisible by 8 for all positive odd integers a.

Inductive Step: Let a = k+2. Then,

a2 - 1 = (k+2)2 - 1

= (k2 + 4k + 4) - 1

= (k2 - 1) + 4k + 4

By our IH,

≡ (0) + 4k + 4 mod 8

Note we know k is odd. Therefore, k = 2h+1 for h ∊ Z.

≡ 4(2h+1) + 4 mod 8

≡ 8h + 8 mod 8

≡ 0 mod 8.

Therefore, by PMI our statement holds. ☽
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Prove that n3 + 2n is divisible by 3 for all even integers n.

● How would we prove this by induction?
○ Show for all positive even integers
○ Show for all negative even integers
○ Show for 0

● But induction deals with the k+1 term. An even + 1 is odd.  How do we change 
our induction to allow us to only care about even numbers?
○ Instead of looking at the k+1 term, we look at the k+2 term



Prove that n3 + 2n is divisible by 3 for positive even integers n.
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Base case: Let n = 2. Then n3 + 2n ≡ 23 + 2(2) ≡ 12 ≡ 0 mod 3. So, this base case 
holds. 
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holds. 

Inductive Hypothesis: Assume for some even integer k ≥ 2,  n3 + 2n ≡ 0 mod 3.



Prove that n3 + 2n is divisible by 3 for positive even integers n.

Base case: Let n = 2. Then n3 + 2n ≡ 23 + 2(2) ≡ 12 ≡ 0 mod 3. So, this base case 
holds. 

Inductive Hypothesis: Assume for some even integer k ≥ 2,  n3 + 2n ≡ 0 mod 3.

Inductive Step: Let n = k+2. Then,

n3 + 2n = (k+2)3 + 2(k+2)

=k3 + 6k2 + 12k + 8 + 2k +4

=(k3 + 2k) + 6k2 + 12k + 12



Prove that n3 + 2n is divisible by 3 for positive even integers n.

Base case: Let n = 2. Then n3 + 2n ≡ 23 + 2(2) ≡ 12 ≡ 0 mod 3. So, this base case holds. 

Inductive Hypothesis: Assume for some even integer k ≥ 2,  n3 + 2n ≡ 0 mod 3.

Inductive Step: Let n = k+2. Then,

n3 + 2n = (k+2)3 + 2(k+2)

=k3 + 6k2 + 12k + 8 + 2k +4

=(k3 + 2k) + 6k2 + 12k + 12

By our IH,

≡(0) + 6k2 + 12k + 12 

≡ 0 mod 3

Therefore by PMI, our statement holds. ☽



Prove that n3 + 2n is divisible by 3 for negative even integers n.

Base case: Let n = -2. Then n3 + 2n ≡ (-2)3 + 2(-2) ≡ -12 ≡ 0 mod 3. So, this base case 
holds. 



Prove that n3 + 2n is divisible by 3 for negative even integers n.

Base case: Let n = -2. Then n3 + 2n ≡ (-2)3 + 2(-2) ≡ -12 ≡ 0 mod 3. So, this base case 
holds. 

Inductive Hypothesis: Assume for some even integer k ≤ -2,  n3 + 2n ≡ 0 mod 3.



Prove that n3 + 2n is divisible by 3 for negative even integers n.

Base case: Let n = -2. Then n3 + 2n ≡ (-2)3 + 2(-2) ≡ -12 ≡ 0 mod 3. So, this base case 
holds. 

Inductive Hypothesis: Assume for some even integer k ≤ -2,  n3 + 2n ≡ 0 mod 3.

Inductive Step: Let n = k-2. Then,

n3 + 2n = (k-2)3 + 2(k-2)

=k3 - 6k2 + 12k - 8 + 2k - 4

=(k3 + 2k) - 6k2 + 12k - 12



Prove that n3 + 2n is divisible by 3 for negative even integers n.

Base case: Let n = -2. Then n3 + 2n ≡ (-2)3 + 2(-2) ≡ -12 ≡ 0 mod 3. So, this base case holds. 

Inductive Hypothesis: Assume for some even integer k ≤ -2,  n3 + 2n ≡ 0 mod 3.

Inductive Step: Let n = k-2. Then,

n3 + 2n = (k-2)3 + 2(k-2)

=k3 - 6k2 + 12k - 8 + 2k - 4

=(k3 + 2k) - 6k2 + 12k - 12

By our IH,

≡(0) - 6k2 + 12k - 12 

≡ 0 mod 3

Therefore by PMI, our statement holds. ☽



Prove that n3 + 2n is divisible by 3 for n = 0.

Let n = 0. Then n3 + 2n ≡ (0)3 + 2(0) ≡  0 mod 3. ☽



Prove that a 2n x 2n chess board with any one square removed can always 
be covered by L shaped tiles
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square then the board is empty. Hence, it is also covered and our base case holds.
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Prove that a 2n x 2n chess board with any one square removed can always 
be covered by L shaped tiles

Base Case: Let n = 0. So, we have a single square chessboard. If we remove one 
square then the board is empty. Hence, it is also covered and our base case holds.

Inductive Hypothesis: Assume for some n ≥ 1, we can tile a 2n-1 x 2n-1 chessboard 
with any square removed. 

Inductive Step: Consider a 2n x 2n chessboard with a missing square. Divide the 
board into four quarters. Place a L tile in the center so that each quarter is missing a 
square.  

By our inductive hypothesis, each of the quarters can be tiled, 
which gives us a way to tile a 2n x 2n chessboard. Hence, by PMI,
we can tile a 2n x 2n chessboard. ☽ 



A chocolate bar consists of unit squares arranged in an n x m rectangular 
grid. You may split the bar into individual unit squares, by breaking along 
the lines. Show the number of breaks needed is nm-1.

Base case: Since we can’t break a 1 x 1 square, we are done splitting the bar. Now 
consider (1)(1) - 1 = 0, so our base case holds 
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A chocolate bar consists of unit squares arranged in an n x m rectangular 
grid. You may split the bar into individual unit squares, by breaking along 
the lines. Show the number of breaks needed is nm-1.

Base case: Since we can’t break a 1 x 1 square, we are done splitting the bar. Now 
consider (1)(1) - 1 = 0, so our base case holds 

Inductive Hypothesis: Assume for some m, n ≥ 1, the number of breaks needed is 
nm-1.

Inductive Step: Without loss of generality, break the bar along a row. So, we get a n1 
x m and a n2 x m bar, where n1 + n1 = n. By the induction hypothesis, the number of 
breaks that we need for the two new bars is n1m - 1 and n2m - 1 respectfully. 



A chocolate bar consists of unit squares arranged in an n x m rectangular 
grid. You may split the bar into individual unit squares, by breaking along 
the lines. Show the number of breaks needed is nm-1.

Base case: Since we can’t break a 1 x 1 square, we are done splitting the bar. Now consider (1)(1) - 1 
= 0, so our base case holds 

Inductive Hypothesis: Assume for some m, n ≥ 1, the number of breaks needed is nm-1.

Inductive Step: Without loss of generality, break the bar along a row. So, we get a n1 x m and a n2 x 
m bar, where n1 + n2 = n. By the induction hypothesis, the number of breaks that we need for the 
two new bars is n1m - 1 and n2m - 1 respectfully. So, we have 

1 + n1m - 1 + n2m - 1 

= n1m + n2m - 1

= m(n1 + n2) - 1

= mn - 1

Therefore by PMI, our statement holds. ☽


