Induction Examples

250H

$$
b_{n}= \begin{cases}2 & \text { if } n=1 \\ 3 b_{n-1}+2 & \text { if } n>1\end{cases}
$$

Use induction to prove that $b_{n}=3^{n}-1$ for all $n \geq 1$.

$$
b_{n}= \begin{cases}2 & \text { if } n=1 \\ 3 b_{n-1}+2 & \text { if } n>1\end{cases}
$$

Use induction to prove that $b_{n}=3^{n}-1$ for all $n \geq 1$.
Base case: Let $\mathrm{n}=1$. Then $\mathrm{b}_{\mathrm{n}}=3^{1}-1=2$. So, this base case holds.

$$
b_{n}= \begin{cases}2 & \text { if } n=1 \\ 3 b_{n-1}+2 & \text { if } n>1\end{cases}
$$

Use induction to prove that $b_{n}=3^{n}-1$ for all $n \geq 1$.
Base case: Let $\mathrm{n}=1$. Then $\mathrm{b}_{\mathrm{n}}=3^{1}-1=2$. So, this base case holds.
Inductive Hypothesis: Assume for some $k \geq 1, b_{k}=3^{k}-1$.

$$
b_{n}= \begin{cases}2 & \text { if } n=1 \\ 3 b_{n-1}+2 & \text { if } n>1\end{cases}
$$

Use induction to prove that $b_{n}=3^{n}-1$ for all $n \geq 1$.
Base case: Let $\mathrm{n}=1$. Then $\mathrm{b}_{\mathrm{n}}=3^{1}-1=2$. So, this base case holds.
Inductive Hypothesis: Assume for some $\mathrm{k} \geq 1, \mathrm{~b}_{\mathrm{k}}=3^{k}-1$.
Inductive Step: Let $\mathrm{n}=\mathrm{k}+1$. Then,

$$
b_{k+1}=3 b_{k}+2
$$

$$
b_{n}= \begin{cases}2 & \text { if } n=1 \\ 3 b_{n-1}+2 & \text { if } n>1\end{cases}
$$

Use induction to prove that $b_{n}=3^{n}-1$ for all $n \geq 1$.
Base case: Let $n=1$. Then $b_{n}=3^{1}-1=2$. So, this base case holds.
Inductive Hypothesis: Assume for some $k \geq 1, b_{k}=3^{k}-1$.
Inductive Step: Let $\mathrm{n}=\mathrm{k}+1$. Then,

$$
b_{k+1}=3 b_{k}+2
$$

By our IH,

$$
\begin{gathered}
3 b_{k}+2=3\left(3^{k}-1\right)+2 \\
=3^{k+1}-3+2 \\
=3^{k+1}-1
\end{gathered}
$$

Therefore, by PMI our statement holds. D

Prove that $\mathrm{a}^{2}-1$ is divisible by 8 for all positive odd integers a.

Prove that $\mathrm{a}^{2}-1$ is divisible by 8 for all positive odd integers a. Base case: Let $\mathrm{a} \equiv 1$. Then $1^{2}-1=0 \bmod 8$. So, this base case holds.

Prove that $\mathrm{a}^{2}-1$ is divisible by 8 for all positive odd integers a.
Base case: Let $\mathrm{a} \equiv 1$. Then $1^{2}-1=0 \bmod 8$. So, this base case holds.
Inductive Hypothesis: Assume for some odd integer $k \geq 1, k^{2}-1 \equiv 0 \bmod 8$.

Prove that $\mathrm{a}^{2}-1$ is divisible by 8 for all positive odd integers a.
Base case: Let $a \equiv 1$. Then $1^{2}-1=0 \bmod 8$. So, this base case holds.
Inductive Hypothesis: Assume for some odd integer $k \geq 1, k^{2}-1 \equiv 0 \bmod 8$.
Inductive Step: Let $\mathrm{a}=\mathrm{k}+2$. Then,

$$
\begin{aligned}
& a^{2}-1=(k+2)^{2}-1 \\
& =\left(k^{2}+4 k+4\right)-1 \\
& =\left(k^{2}-1\right)+4 k+4
\end{aligned}
$$

By our IH,

$$
\equiv(0)+4 \mathrm{k}+4 \bmod 8
$$

Prove that $\mathrm{a}^{2}-1$ is divisible by 8 for all positive odd integers a.

Inductive Step: Let $\mathrm{a}=\mathrm{k}+2$. Then,

$$
\begin{aligned}
& a^{2}-1=(k+2)^{2}-1 \\
& =\left(k^{2}+4 k+4\right)-1 \\
& =\left(k^{2}-1\right)+4 k+4
\end{aligned}
$$

By our IH,

$$
\equiv(0)+4 k+4 \bmod 8
$$

Note we know k is odd. Therefore, $\mathrm{k}=2 \mathrm{~h}+1$ for $\mathrm{h} \in \mathbf{Z}$.

$$
\begin{gathered}
\equiv 4(2 h+1)+4 \bmod 8 \\
\equiv 8 \mathrm{~h}+8 \bmod 8 \\
\equiv 0 \bmod 8 .
\end{gathered}
$$

Therefore, by PMI our statement holds. D

Prove that $n^{3}+2 n$ is divisible by 3 for all even integers n.

Prove that $n^{3}+2 n$ is divisible by 3 for all even integers n.

- How would we prove this by induction?

Prove that $n^{3}+2 n$ is divisible by 3 for all even integers n.

- How would we prove this by induction?
- Show for all positive even integers
- Show for all negative even integers
- Show for 0

Prove that $n^{3}+2 n$ is divisible by 3 for all even integers n.

- How would we prove this by induction?
- Show for all positive even integers
- Show for all negative even integers
- Show for 0
- But induction deals with the $\mathrm{k}+1$ term. An even +1 is odd. How do we change our induction to allow us to only care about even numbers?

Prove that $n^{3}+2 n$ is divisible by 3 for all even integers n.

- How would we prove this by induction?
- Show for all positive even integers
- Show for all negative even integers
- Show for 0
- But induction deals with the $\mathrm{k}+1$ term. An even +1 is odd. How do we change our induction to allow us to only care about even numbers?
- Instead of looking at the $k+1$ term, we look at the $k+2$ term

Prove that $n^{3}+2 n$ is divisible by 3 for positive even integers n.

Prove that $n^{3}+2 n$ is divisible by 3 for positive even integers n.
Base case: Let $\mathrm{n}=2$. Then $\mathrm{n}^{3}+2 \mathrm{n} \equiv 2^{3}+2(2) \equiv 12 \equiv 0 \bmod 3$. So, this base case holds.

Prove that $n^{3}+2 n$ is divisible by 3 for positive even integers n.
Base case: Let $\mathrm{n}=2$. Then $\mathrm{n}^{3}+2 \mathrm{n} \equiv 2^{3}+2(2) \equiv 12 \equiv 0 \bmod 3$. So, this base case holds.

Inductive Hypothesis: Assume for some even integer $\mathrm{k} \geq 2, \mathrm{n}^{3}+2 \mathrm{n} \equiv 0 \bmod 3$.

Prove that $n^{3}+2 n$ is divisible by 3 for positive even integers n.
Base case: Let $n=2$. Then $n^{3}+2 n \equiv 2^{3}+2(2) \equiv 12 \equiv 0 \bmod 3$. So, this base case holds.

Inductive Hypothesis: Assume for some even integer $k \geq 2, n^{3}+2 n \equiv 0 \bmod 3$. Inductive Step: Let $\mathrm{n}=\mathrm{k}+2$. Then,

$$
\begin{aligned}
& n^{3}+2 n=(k+2)^{3}+2(k+2) \\
= & k^{3}+6 k^{2}+12 k+8+2 k+4 \\
= & \left(k^{3}+2 k\right)+6 k^{2}+12 k+12
\end{aligned}
$$

Prove that $n^{3}+2 n$ is divisible by 3 for positive even integers n.

Base case: Let $n=2$. Then $n^{3}+2 n \equiv 2^{3}+2(2) \equiv 12 \equiv 0 \bmod 3$. So, this base case holds. Inductive Hypothesis: Assume for some even integer $k \geq 2, n^{3}+2 n \equiv 0 \bmod 3$. Inductive Step: Let $\mathrm{n}=\mathrm{k}+2$. Then,

$$
\begin{gathered}
n^{3}+2 n=(k+2)^{3}+2(k+2) \\
=k^{3}+6 k^{2}+12 k+8+2 k+4 \\
=\left(k^{3}+2 k\right)+6 k^{2}+12 k+12
\end{gathered}
$$

By our IH,

$$
\begin{gathered}
\equiv(0)+6 k^{2}+12 k+12 \\
\equiv 0 \bmod 3
\end{gathered}
$$

Therefore by PMI, our statement holds. D

Prove that $n^{3}+2 n$ is divisible by 3 for negative even integers n.
Base case: Let $\mathrm{n}=-2$. Then $\mathrm{n}^{3}+2 \mathrm{n} \equiv(-2)^{3}+2(-2) \equiv-12 \equiv 0 \bmod 3$. So, this base case holds.

Prove that $n^{3}+2 n$ is divisible by 3 for negative even integers n.
Base case: Let $n=-2$. Then $n^{3}+2 n \equiv(-2)^{3}+2(-2) \equiv-12 \equiv 0 \bmod 3$. So, this base case holds.

Inductive Hypothesis: Assume for some even integer $\mathrm{k} \leq-2, \mathrm{n}^{3}+2 \mathrm{n} \equiv 0 \bmod 3$.

Prove that $n^{3}+2 n$ is divisible by 3 for negative even integers n.
Base case: Let $\mathrm{n}=-2$. Then $\mathrm{n}^{3}+2 \mathrm{n} \equiv(-2)^{3}+2(-2) \equiv-12 \equiv 0 \bmod 3$. So, this base case holds.

Inductive Hypothesis: Assume for some even integer $\mathrm{k} \leq-2, \mathrm{n}^{3}+2 \mathrm{n} \equiv 0 \bmod 3$.
Inductive Step: Let $\mathrm{n}=\mathrm{k}-2$. Then,

$$
\begin{aligned}
& n^{3}+2 n=(k-2)^{3}+2(k-2) \\
= & k^{3}-6 k^{2}+12 k-8+2 k-4 \\
= & \left(k^{3}+2 k\right)-6 k^{2}+12 k-12
\end{aligned}
$$

Prove that $n^{3}+2 n$ is divisible by 3 for negative even integers n.

Base case: Let $n=-2$. Then $n^{3}+2 n \equiv(-2)^{3}+2(-2) \equiv-12 \equiv 0 \bmod 3$. So, this base case holds. Inductive Hypothesis: Assume for some even integer $\mathrm{k} \leq-2, \mathrm{n}^{3}+2 \mathrm{n} \equiv 0 \bmod 3$. Inductive Step: Let $\mathrm{n}=\mathrm{k}-2$. Then,

$$
\begin{gathered}
n^{3}+2 n=(k-2)^{3}+2(k-2) \\
=k^{3}-6 k^{2}+12 k-8+2 k-4 \\
=\left(k^{3}+2 k\right)-6 k^{2}+12 k-12
\end{gathered}
$$

By our IH,

$$
\begin{gathered}
\equiv(0)-6 k^{2}+12 \mathrm{k}-12 \\
\equiv 0 \bmod 3
\end{gathered}
$$

Therefore by PMI, our statement holds. D

Prove that $\mathrm{n}^{3}+2 \mathrm{n}$ is divisible by 3 for $\mathrm{n}=0$.
Let $\mathrm{n}=0$. Then $\mathrm{n}^{3}+2 \mathrm{n} \equiv(0)^{3}+2(0) \equiv 0 \bmod 3$. D

Prove that a $2^{n} \times 2^{n}$ chess board with any one square removed can always be covered by L shaped tiles

Prove that a $2^{n} \times 2^{n}$ chess board with any one square removed can always be covered by L shaped tiles

Base Case: Let $\mathrm{n}=0$. So, we have a single square chessboard. If we remove one square then the board is empty. Hence, it is also covered and our base case holds.

Prove that a $2^{n} \times 2^{n}$ chess board with any one square removed can always be covered by L shaped tiles

Base Case: Let $\mathrm{n}=0$. So, we have a single square chessboard. If we remove one square then the board is empty. Hence, it is also covered and our base case holds.

Inductive Hypothesis: Assume for some $n \geq 1$, we can tile a $2^{n-1} \times 2^{n-1}$ chessboard with any square removed.

Prove that a $2^{n} \times 2^{n}$ chess board with any one square removed can always be covered by L shaped tiles

Base Case: Let $\mathrm{n}=0$. So, we have a single square chessboard. If we remove one square then the board is empty. Hence, it is also covered and our base case holds.

Inductive Hypothesis: Assume for some $n \geq 1$, we can tile a $2^{n-1} \times 2^{n-1}$ chessboard with any square removed.

Inductive Step: Consider a $2^{n} \times 2^{n}$ chessboard with a missing square. Divide the board into four quarters. Place a L tile in the center so that each quarter is missing a square.

Prove that a $2^{n} \times 2^{n}$ chess board with any one square removed can always be covered by L shaped tiles

Base Case: Let $\mathrm{n}=0$. So, we have a single square chessboard. If we remove one square then the board is empty. Hence, it is also covered and our base case holds.

Inductive Hypothesis: Assume for some $n \geq 1$, we can tile a $2^{n-1} \times 2^{n-1}$ chessboard with any square removed.

Inductive Step: Consider a $2^{n} \times 2^{n}$ chessboard with a missing square. Divide the board into four quarters. Place a L tile in the center so that each quarter is missing a square.

By our inductive hypothesis, each of the quarters can be tiled, which gives us a way to tile a $2^{n} \times 2^{n}$ chessboard. Hence, by PMI, we can tile a $2^{n} \times 2^{n}$ chessboard. D

A chocolate bar consists of unit squares arranged in an $\mathrm{n} \times \mathrm{m}$ rectangular grid. You may split the bar into individual unit squares, by breaking along the lines. Show the number of breaks needed is nm-1.

Base case: Since we can't break a 1×1 square, we are done splitting the bar. Now consider (1)(1)-1 = 0 , so our base case holds

A chocolate bar consists of unit squares arranged in an $\mathrm{n} \times \mathrm{m}$ rectangular grid. You may split the bar into individual unit squares, by breaking along the lines. Show the number of breaks needed is nm-1.

Base case: Since we can't break a 1×1 square, we are done splitting the bar. Now consider (1)(1)-1 = 0 , so our base case holds

Inductive Hypothesis: Assume for some $m, n \geq 1$, the number of breaks needed is nm-1.

A chocolate bar consists of unit squares arranged in an $\mathrm{n} \times \mathrm{m}$ rectangular grid. You may split the bar into individual unit squares, by breaking along the lines. Show the number of breaks needed is nm-1.

Base case: Since we can't break a 1×1 square, we are done splitting the bar. Now consider (1)(1)-1 = 0, so our base case holds

Inductive Hypothesis: Assume for some $m, n \geq 1$, the number of breaks needed is nm-1.

Inductive Step: Without loss of generality, break the bar along a row. So, we get a n_{1} $x \mathrm{~m}$ and $\mathrm{a} \mathrm{n}_{2} \times \mathrm{m}$ bar, where $\mathrm{n}_{1}+\mathrm{n}_{1}=\mathrm{n}$. By the induction hypothesis, the number of breaks that we need for the two new bars is $n_{1} m-1$ and $n_{2} m-1$ respectfully.

A chocolate bar consists of unit squares arranged in an $\mathrm{n} \times \mathrm{m}$ rectangular grid. You may split the bar into individual unit squares, by breaking along the lines. Show the number of breaks needed is nm-1.

Base case: Since we can't break a 1×1 square, we are done splitting the bar. Now consider (1)(1) - 1 = 0 , so our base case holds

Inductive Hypothesis: Assume for some $m, n \geq 1$, the number of breaks needed is $n m-1$.
Inductive Step: Without loss of generality, break the bar along a row. So, we get a $n_{1} \times m$ and a $n_{2} \times$ m bar, where $n_{1}+n_{2}=n$. By the induction hypothesis, the number of breaks that we need for the two new bars is $n_{1} m-1$ and $n_{2} m-1$ respectfully. So, we have

$$
\begin{gathered}
1+n_{1} m-1+n_{2} m-1 \\
=n_{1} m+n_{2} m-1 \\
=m\left(n_{1}+n_{2}\right)-1 \\
=m n-1
\end{gathered}
$$

Therefore by PMI, our statement holds. D

