START

RECORDING

Constructive Induction

CMSC 250

Introductory Example

- We already know that

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}=\frac{n^{2}}{2}+\frac{n}{2}
$$

- But how? Who told us this?
- This is not how math works; we usually do not know the answer ahead of time!

Making a Good Guess with Calculus

- Calculus tells us that (discrete) sums are approximations of (continuous) integrals.
- Then, we can observe that:

$$
\sum_{i=1}^{n} i \approx \int_{1}^{n} x d x=\frac{1}{2} n^{2}+c, \quad c \in \mathbb{R}
$$

- So we know that the sum ought to be some quadratic function of n.

Making a Good Guess with CS

- Another way to guess the quadratic form would be with plotting!
- Suppose $f(n)=\sum_{i=1}^{n} i$. Then:
- $f(0)=\sum_{i=1}^{0} i=0$
- $f(1)=\sum_{i=1}^{1} i=1$
- $f(2)=\sum_{i=1}^{2} i=1+2=3$
- $f(3)=\sum_{i=1}^{3} i=1+2+3=6$
- $f(30)=\sum_{i=1}^{30} i=1+2+\cdots+30=465$
- We can then fit a curve and see the quadratic curve by ourselves!

Making a Good Guess

- We saw that the sum is some quadratic polynomial. This is all we know!
- So $\sum_{i=1}^{n} i$ is some $\operatorname{poly}(n)$ with degree 2, i.e

$$
\sum_{i=1}^{n} i=A n^{2}+B n+C, \quad A, B, C \in \mathbb{R}
$$

- How to determine A, B, and C?

General Logic

- Solve as if you had an inductive proof (so IB, IH, IS)
- For every step, we will establish conditions on A, B, C such that the relevant step is correct.
- Contrast this with directly proving that every step is correct.

Constant C

- IB: LHS is $\sum_{i=1}^{0} i=0$. For RHS to be equal to LHS we need:

$$
A n^{2}+B n+C=0 \Rightarrow C=0
$$

- So we already know that $C=0$.

Co-efficients A, B

- IH: Assume that the proposition holds for $n \geq 0$. Then:

$$
\sum_{i=1}^{n} i=A n^{2}+B n
$$

- IS: We want to prove that

$$
\left(\sum_{i=1}^{n} i=A n^{2}+B n\right) \Rightarrow\left(\sum_{i=1}^{n+1} i=A(n+1)^{2}+B(n+1)\right)
$$

Co-efficients A, B

- IH: Assume that the proposition holds for $n \geq 0$. Then:
- IS: We want to prove that

$$
\underbrace{\left(\sum_{i=1}^{n} i=A n^{2}+B n\right)}_{P(n)} \Rightarrow \underbrace{\left(\sum_{i=1}^{n+1} i=A(n+1)^{2}+B(n+1)\right)}_{P(n+1)}
$$

Co-efficients A, B

$$
\sum_{i=1}^{n+1} i=\sum_{i=1}^{n} i+(n+1) \stackrel{\mathrm{IH}}{=} A n^{2}+B n+(n+1)
$$

- We have to equate this to $A(n+1)^{2}+B(n+1)$, since this is what we're trying to prove:

$$
\begin{gathered}
A n^{2}+B n+(n+1)=A(n+1)^{2}+B(n+1) \Rightarrow \\
A n^{z^{2}}+B n+(n+1)=A n^{2}+2 A n+A+B n+B \Rightarrow \\
n+1=2 A n+(A+B)
\end{gathered}
$$

Co-efficients A, B

$$
n+1=2 A n+(A+B)
$$

- This is an equality between polynomials of k, so equating the coefficients yields:

$$
\begin{aligned}
& 1=2 A \\
& A+B=1
\end{aligned}
$$

Co-efficients A, B

$$
n+1=2 A n+(A+B)
$$

- This is an equality between polynomials in n, so equating the coefficients yields:

$$
\begin{aligned}
& 1=2 A \\
& A+B=1
\end{aligned}
$$

- Note: The IS did not end up with TRUE, but with conditions on A, B for it to be TRUE.

All Our Constraints

1. $C=0$
2. $A+B=1$
3. $2 \cdot A=1$

- Algebra yields $A=B=1 / 2$, so:

$$
\sum_{i=0}^{n} i=\frac{1}{2} n^{2}+\frac{1}{2} n+0=\frac{n(n+1)}{2}
$$

What if Our Guess is Wrong (Over)?

1. Suppose we guess

$$
\sum_{i=1}^{n} i=A \cdot n^{3}+B \cdot n^{2}+C \cdot n+D
$$

2. This still works, we will just find $A=0$ (try it at home!)

What if Our Guess is Wrong (Under)?

1. Suppose we guess

$$
\sum_{i=1}^{n} i=A \cdot n+B
$$

2. This does not work (infeasible equation), no $A, B \in \mathbb{R}$ will satisfy the constraints (try it at home!)

Another Example (with Bounds!)

- Let a be a sequence defined as follows:

$$
a_{n}=\left\{\begin{array}{lr}
2, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Task: Find an upper bound for a_{n}.

Another Example (with Bounds!)

- Let a be a sequence defined as follows:

$$
a_{n}=\left\{\begin{array}{lr}
2, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Task: Find an upper bound for a_{n}.
-What kind of inductive structure am I expecting?

Another Example (with Bounds!)

- Let a be a sequence defined as follows:

$$
a_{n}=\left\{\begin{array}{lr}
2, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Task: Find an upper bound for a_{n}.
- What kind of inductive structure am I expecting?

An inductive base with > 1 elements and a recursive rule with references to two prior terms hints towards strong induction...

Key Step

$$
a_{n}=\left\{\begin{array}{lr}
2, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Because of our experience with sequences like Fibonacci, Tribonacci that all have this form, we suspect:

$$
a_{n} \leq C \cdot D^{n}, \quad C, D \in \mathbb{R}
$$

Constraints on C

- IB:
- $a_{0} \leq C \cdot D^{0} \Leftrightarrow 2 \leq C$
- $a_{1} \leq C \cdot D^{1} \Leftrightarrow 50 \leq C \cdot D$

Inductive Hypothesis

- IB:
- $a_{0} \leq C \cdot D^{0} \Leftrightarrow 2 \leq C$
- $a_{1} \leq C \cdot D^{1} \Leftrightarrow 50 \leq C \cdot D$
- IH: Let $n \geq 1$. Assume that $(\forall i \in\{0,1,2, \ldots n\})\left[a_{i} \leq C \cdot D^{i}\right]$

Inductive Step

- IB:
- $a_{0} \leq C \cdot D^{0} \Leftrightarrow 2 \leq C$
- $a_{1} \leq C \cdot D^{1} \Leftrightarrow 50 \leq C \cdot D$
- IH: Let $n \geq 1$. Assume that $\forall i \in\{0,1,2, \ldots n\}, a_{i} \leq C \cdot D^{i}$.
- IS:

$$
(\forall i \in\{0,1,2, \ldots n\})\left[a_{i} \leq C \cdot D^{i}\right] \Rightarrow\left(a_{n+1} \leq C \cdot D^{n+1}\right)
$$

Inductive Step

- IS:

$$
(\forall i \in\{0,1,2, \ldots n\})\left[a_{i} \leq C \cdot D^{i}\right] \Rightarrow\left(a_{n+1} \leq C \cdot D^{n+1}\right)
$$

- From the definition of a, we have $a_{n+1}=10 a_{n}+3 a_{n-1}$. Therefore,

$$
a_{n+1}=10 a_{n}+3 a_{n-1} \leq 10 \cdot C \cdot D^{n}+3 \cdot C \cdot D^{n-1}(\mathrm{By} \mathrm{IH})
$$

- Want $10 \cdot C \cdot D^{n}+3 \cdot C \cdot D^{n-1} \leq C \cdot D^{n+1}$

Inductive Step

- Want

$$
\begin{aligned}
& 10 \cdot \not \subset \cdot D^{n}+3 \cdot \not \subset \cdot D^{n-1} \leq \not \subset \\
& 10 \cdot D^{n+1} \Leftrightarrow
\end{aligned}
$$

- Dividing both sides by D^{n-1} yields:

$$
10 D+3 \leq D^{2}
$$

All Constraints

1. $2 \leq C$
2. $50 \leq C \cdot D$
3. $10 D+3 \leq D^{2}$

- We deal with constraint 3 first.
- Smallest $D \in \mathbb{R}^{>0}$ that satisfies it:

All Constraints

1. $2 \leq C$
2. $50 \leq C \cdot D$
3. $10 D+3 \leq D^{2}$

- We deal with constraint 3 first.
- Smallest $D \in \mathbb{R}^{>0}$ that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON'T WANT TO SPEND TIME SOLVING $D^{2}-10 D-3 \geq 0$
- Smallest $D \in \mathbb{N}$ that satisfies it: $D=\cdots$? ? ? (FIND ONE REAL QUICK, PLZ)

All Constraints

1. $2 \leq C$
2. $50 \leq C \cdot D$
3. $10 D+3 \leq D^{2}$

- We deal with constraint 3 first.
- Smallest $D \in \mathbb{R}^{>0}$ that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON'T WANT TO SPEND TIME SOLVING $D^{2}-10 D-3 \geq 0$
- Smallest $D \in \mathbb{N}$ that satisfies it: $D=\cdots$? ? ? (FIND ONE REAL QUICK, PLZ)

$$
D=11 \text { works! }
$$

All Constraints

1. $2 \leq C$
2. $50 \leq C \cdot D$
3. $10 D+3 \leq D^{2}$

- Constraint (3) satisfied when $D \geq 11$ (just discussed)
- Since we want to find tight bounds for a_{n}, to minimize C, we select $D=11$ and from constraint (2) we have: $50 \leq C \cdot 11 \Leftrightarrow C \geq 4.55 \Rightarrow$ $C_{\text {min }}=4.55$

All Constraints

1. $2 \leq C$
2. $50 \leq C \cdot D$
3. $10 D+3 \leq D^{2}$

- Constraint (3) satisfied when $D \geq 11$ (just discussed)
- Since we want to find tight bounds for a_{n}, to minimize C, we select $D=11$ and from constraint (2) we have: $50 \leq C \cdot 11 \Leftrightarrow C \geq 4.55 \Rightarrow$ $C_{\text {min }}=4.55$
- Conclusion:

$$
a_{n} \leq 4.55 \cdot 11^{n}
$$

Work on This

- A slight modification on the previous sequence:

$$
a_{n}=\left\{\begin{array}{lr}
10, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Assuming that we still suspect $a_{n} \leq C \cdot D^{n}$, you solve for the new C, D right now!

Work on This

- A slight modification on the previous sequence:

$$
a_{n}=\left\{\begin{array}{lr}
10, & n=0 \\
50, & n=1 \\
10 a_{n-1}+3 a_{n-2}, & n \geq 2
\end{array}\right.
$$

- Assuming that we still suspect $a_{n} \leq C \cdot D^{n}$, solve for the new C, D !
- Your solution ought to be $C=10, D=11$. What do you observe?

Coin Problem

- In Celestia, there are only $7 c$ and $10 c$ coins.
- We want to find the least monetary amount payable exclusively with such coins!
- In quantifiers (all quantifications assumed over \mathbb{N})

$$
(\forall n \geq A)\left(\exists n_{1}, n_{2}\right)\left[n=7 n_{1}+10 n_{2}\right]
$$

- Goal: Find constraints on A via constructive induction!
- IB: ???

Coin Problem

- In Celestia, there are only $7 c$ and $10 c$ coins.
- We want to find the least monetary amount payable exclusively with such coins!
- In quantifiers (all quantifications assumed over \mathbb{N})

$$
(\forall n \geq A)\left(\exists n_{1}, n_{2}\right)\left[n=7 n_{1}+10 n_{2}\right]
$$

- Goal: Find constraints on A via constructive induction!
-IB: Defer for later!!!

Coin Problem

- In Celestia, there are only 7c and 10c coins.
- We want to find the least monetary amount payable exclusively with such coins!
- In quantifiers (all quantifications assumed over \mathbb{N})

$$
(\forall n \geq A)\left(\exists n_{1}, n_{2}\right)\left[n=7 n_{1}+10 n_{2}\right]
$$

- Goal: Find constraints on A via constructive induction!
- IB: Defer for later!!!
- IH: Assume that for $n \geq A,\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]$

Coin Problem (IS)

- From the IH we have $\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]$
- How can we add/remove coins to get another cent?

Coin Problem (IS)

- From the IH we have $\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]$
- How can we add/remove coins to get another cent?

1. $n_{2} \geq 2$: Remove two $10 c$ coins, add three $7 c$ coins

$$
\begin{aligned}
& n+1=7 n_{1}+10 n_{2}+1=7 n_{1}+10 n_{2}+(21-20) \\
& =7\left(n_{1}+3\right)+10\left(n_{2}-2\right)
\end{aligned}
$$

Coin Problem (IS)

- From the IH we have $\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]$
- How can we add/remove coins to get another cent?

1. $n_{2} \geq 2$: Remove two $10 c$ coins, add three $7 c$ coins

$$
\begin{aligned}
& n+1=7 n_{1}+10 n_{2}+1=7 n_{1}+10 n_{2}+(21-20) \\
& =7\left(n_{1}+3\right)+10\left(n_{2}-2\right)
\end{aligned}
$$

2. $n_{1} \geq 7$: Remove seven $7 c$ coins, add five $10 c$ coins

$$
\begin{aligned}
& n+1=7 n_{1}+10 n_{2}+1=7 n_{1}+10 n_{2}+(50-49) \\
& =7\left(n_{1}-7\right)+10\left(n_{2}+5\right)
\end{aligned}
$$

Coin Problem (IS)

3. $\left(n_{1} \leq 6\right) \wedge\left(n_{2} \leq 1\right)$: Max value is $6 \times 7+1 \times 10=52$, so $n \leq 52$.

RECAP

- We've shown that if $n \geq 53$, then

$$
\left(\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]\right) \Rightarrow\left(\left(\exists n_{1}, n_{2}\right)\left[n+1=7 \cdot n_{1}+10 n_{2}\right]\right)
$$

- For which n do we know that $((\exists a, b \in \mathbb{N})[n=7 a+10 b]$?

$$
\forall n \geq 52
$$


```
Something
    Else
```


RECAP

- We've shown that if $n \geq 53$, then

$$
\left(\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]\right) \Rightarrow\left(\left(\exists n_{1}, n_{2}\right)\left[n+1=7 \cdot n_{1}+10 n_{2}\right]\right)
$$

- For which n do we know that $((\exists a, b \in \mathbb{N})[n=7 a+10 b]$?
$\forall n \geq 53$

Something
Else

Only the implication holds! We don't have any hard truth (base) about whether it EVER holds.

Coin Problem (IS)

3. $\left(n_{1} \leq 6\right) \wedge\left(n_{2} \leq 1\right)$: Max value is $6 \times 7+1 \times 10=52$, so $n \leq 52$.

- Condition: $A \geq 53$.
- Now I need a base case.
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[53=7 \cdot n_{1}+10 n_{2}\right]$

Coin Problem (IS)

3. $\left(n_{1} \leq 6\right) \wedge\left(n_{2} \leq 1\right)$: Max value is $6 \times 7+1 \times 10=52$, so $k \leq 52$.

- Condition: $A \geq 53$.
- Now I need a base case.
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[53=7 \cdot n_{1}+10 n_{2}\right]$

Coin Problem (IS)

3. $\left(n_{1} \leq 6\right) \wedge\left(n_{2} \leq 1\right)$: Max value is $6 \times 7+1 \times 10=52$, so $k \leq 52$.

- Condition: $A \geq 53$.
- Now I need a base case.
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[53=7 \cdot n_{1}+10 n_{2}\right]$
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[54=7 \cdot n_{1}+10 n_{2}\right]$

Coin Problem (IS)

3. $\left(n_{1} \leq 6\right) \wedge\left(n_{2} \leq 1\right)$: Max value is $6 \times 7+1 \times 10=52$, so $k \leq 52$.

- Condition: $A \geq 53$.
- Now I need a base case.
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[53=7 \cdot n_{1}+10 n_{2}\right]$
- $\left(\exists\right.$? $\left.n_{1}, n_{2} \in \mathbb{N}\right)\left[54=7 \cdot n_{1}+10 n_{2}\right]$

RECAP

- We've shown that if $n \geq 53$, then

$$
\left(\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]\right) \Rightarrow\left(\left(\exists n_{1}, n_{2}\right)\left[n+1=7 \cdot n_{1}+10 n_{2}\right]\right)
$$

- We've also shown that $\left(\exists r_{1}, r_{2} \in \mathbb{N}\right)\left[54=7 r_{1}+10 r_{2}\right]$

$$
\left(r_{1}=2, r_{2}=4\right)
$$

RECAP

- We've shown that if $n \geq 53$, then

$$
\left(\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]\right) \Rightarrow\left(\left(\exists n_{1}, n_{2}\right)\left[n+1=7 \cdot n_{1}+10 n_{2}\right]\right)
$$

- We've also shown that $\left(\exists r_{1}, r_{2} \in \mathbb{N}\right)\left[54=7 r_{1}+10 r_{2}\right]$

$$
\left(r_{1}=2, r_{2}=4\right)
$$

- What do we know NOW about the theorem?

```
True for
\(n \geq 52\)
```


True for
 $n \geq 53$

RECAP

- We've shown that if $n \geq 53$, then

$$
\left(\left(\exists n_{1}, n_{2}\right)\left[n=7 \cdot n_{1}+10 n_{2}\right]\right) \Rightarrow\left(\left(\exists n_{1}, n_{2}\right)\left[n+1=7 \cdot n_{1}+10 n_{2}\right]\right)
$$

- We've also shown that $\left(\exists r_{1}, r_{2} \in \mathbb{N}\right)\left[54=7 r_{1}+10 r_{2}\right]$

$$
\left(r_{1}=2, r_{2}=4\right)
$$

- What do we know NOW about the theorem?

```
True for
\(n \geq 52\)
```


Nothing

What is A ?

- Recall the theorem (all quantifiers over \mathbb{N}):

$$
(\forall n \geq A)\left(\exists n_{1}, n_{2}\right)\left[n=7 n_{1}+10 n_{2}\right]
$$

- Our goal was to find A.
- $A=54$ works, and is optimal, since $A=53$ does not work.

Question

- Is the theorem true for any $n \leq 53$?


```
No
(Why?)
```


Question

- Is the theorem true for any $n \leq 53$?

No
(Why?)
$0,7,10,14,17,20,21,24,27,28,30,31,34,35,37,38,40$, $41,42,44,45,47,48,49,50,51,52$

- Note that there are gaps between these integers!

And Here's Another

- Let a be a sequence defined as follows:

$$
a_{n}= \begin{cases}0, & n=0 \\ 2, & n=1 \\ a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{4}\right\rfloor}+5 n, & n \geq 2\end{cases}
$$

- Then, find $C \in \mathbb{R}$ such that

$$
(\forall n \in \mathbb{N})\left[a_{n} \leq C \cdot n\right]
$$

And Here's Another

- Let a be a sequence defined as follows:

$$
a_{n}= \begin{cases}0, & n=0 \\ 2, & n=1 \\ a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{4}\right\rfloor}+5 n, & n \geq 2\end{cases}
$$

- Then, find $C \in \mathbb{R}$ such that

$$
(\forall n \in \mathbb{N})\left[a_{n} \leq C \cdot n\right]
$$

- We proceed via strong induction on n.

And Here's Another

- Let a be a sequence defined as follows:

$$
a_{n}= \begin{cases}0, & n=0 \\ 2, & n=1 \\ a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{4}\right\rfloor}+5 n, & n \geq 2\end{cases}
$$

- Then, find $C \in \mathbb{R}$ such that

$$
(\forall n \in \mathbb{N})\left[a_{n} \leq C \cdot n\right]
$$

- We proceed via strong induction on n.
- In fact, to make some of the math easier, we will assume the hypothesis until $P(n-1)$ and prove the step for $P(n)$ instead of $P(n+1)$

Finding C

- IB:
- For $n=0, a_{0} \leq C \cdot 0 \Leftrightarrow 0 \leq 0$. No constraints on C yet!
- For $n=1, a_{1} \leq C \cdot n \Leftrightarrow 2 \leq C$. Done. We have our first lower bound for C.

Finding C

- IB:
- For $n=0, a_{0} \leq C \cdot 0 \Leftrightarrow 0 \leq 0$. No constraints on C yet!
- For $n=1, a_{1} \leq C \cdot n \Leftrightarrow 2 \leq C$. Done. We have our first lower bound for C.
- IH: Let $n \geq$ 2. Then, assume $(\forall i \in\{0,1,2, \ldots, n-1\}[P(i)]$, where $P(i)$ means $a_{i} \leq C \cdot i$

Finding C

- IB:
- For $n=0, a_{0} \leq C \cdot 0 \Leftrightarrow 0 \leq 0$. No constraints on C yet!
- For $n=1, a_{1} \leq C \cdot n \Leftrightarrow 2 \leq C$. Done. We have our first lower bound for C.
- IH: Let $n \geq$ 2. Then, assume $(\forall i \in\{0,1,2, \ldots, n-1\}[P(i)]$, where $P(i)$ means $a_{i} \leq C \cdot i$
- IS: We attempt to prove $(P(0) \wedge P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)) \Rightarrow P(n)$:

$$
\bigwedge_{i=0}^{i=n-1}\left(a_{i} \leq C \cdot i\right) \Rightarrow a_{n} \leq C \cdot n
$$

Finding C

- IS: We attempt to prove $(P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)) \Rightarrow P(n)$:

$$
\bigwedge_{i=0}^{i=n-1}\left(a_{i} \leq C \cdot i\right) \Rightarrow a_{n} \leq C \cdot n
$$

- From the IH, and taking into consideration that $0 \leq\left\lfloor\frac{n}{4}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor \leq n$, we have (next slide):

Finding C

- From the IH , and taking into consideration that $0 \leq\left\lfloor\frac{n}{4}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor \leq n$, we have:

$$
\left\{\begin{array}{l}
a_{\lfloor n / 4}|\leq C \cdot| n / 4 \left\lvert\, \leq C \cdot \frac{n}{4}\right. \\
a_{\lfloor n / 2\rfloor} \leq C \cdot|n / 2| \leq C \cdot \frac{n}{2}
\end{array}\right.
$$

- $a_{n}=a_{\lfloor n / 2\rfloor}+a_{\lfloor n / 4\rfloor}+5 n \leq C \cdot \frac{n}{2}+C \cdot \frac{n}{4}+5 n=\frac{n *(3 C+20)}{4}$

Finding C

- We have:

$$
a_{n} \leq \frac{n *(3 C+20)}{4}
$$

- We want:

$$
a_{n} \leq C \cdot n
$$

- Hence, we want a C such that:

$$
\frac{n *(3 C+20)}{4} \leq C \cdot n
$$

Finding C

$$
\begin{aligned}
& \frac{\mathcal{n}^{\prime}(3 C+20)}{4} \leq C \cdot \not \mathcal{N}^{n \geq 1} \Leftrightarrow \\
& \frac{(3 C+20)}{4} \leq C \Leftrightarrow \\
& 3 C+20 \leq 4 C \Leftrightarrow \\
& C \geq 20 \\
& \Rightarrow C_{\text {min }}=20
\end{aligned}
$$

Constraints

- From the IB: $C \geq 2$
- From the IS: $C \geq 20$
- Since we want to minimize C, we set $C=20$.

STOP

RECORDING

