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Introductory Example

• We already know that 

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 =
𝑛𝑛(𝑛𝑛 + 1)

2
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2
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𝑛𝑛
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• But how? Who told us this?
• This is not how math works; we usually do not know the answer 

ahead of time!



Making a Good Guess with Calculus

• Calculus tells us that (discrete) sums are approximations of 
(continuous) integrals.

• Then, we can observe that:

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 ≈�
1

𝑛𝑛
𝑥𝑥 𝑑𝑑𝑥𝑥 =

1
2
𝑛𝑛2 + 𝑐𝑐, 𝑐𝑐 ∈ ℝ

• So we know that the sum ought to be some quadratic function of 𝑛𝑛.



Making a Good Guess with CS

• Another way to guess the quadratic form would be with plotting!
• Suppose 𝑓𝑓 𝑛𝑛 = ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖. Then:

• 𝑓𝑓 0 = ∑𝑖𝑖=10 𝑖𝑖 = 0
• 𝑓𝑓 1 = ∑𝑖𝑖=11 𝑖𝑖 = 1
• 𝑓𝑓 2 = ∑𝑖𝑖=12 𝑖𝑖 = 1 + 2 = 3
• 𝑓𝑓 3 = ∑𝑖𝑖=13 𝑖𝑖 = 1 + 2 + 3 = 6
• …
• 𝑓𝑓 30 = ∑𝑖𝑖=130 𝑖𝑖 = 1 + 2 + ⋯+ 30 = 465

• We can then fit a curve and see the quadratic curve by ourselves!



Making a Good Guess

• We saw that the sum is some quadratic polynomial. This is all we 
know!

• So ∑𝑖𝑖=1𝑛𝑛 𝑖𝑖 is some 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛) with degree 2, i.e

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 + 𝐶𝐶, 𝐴𝐴,𝐵𝐵,𝐶𝐶 ∈ ℝ

• How to determine A, B, and C?



General Logic

• Solve as if you had an inductive proof (so IB, IH, IS)
• For every step, we will establish conditions on A, B,C such that the 

relevant step is correct.
• Contrast this with directly proving that every step is correct.



Constant 𝐶𝐶

• IB: LHS is ∑𝑖𝑖=10 𝑖𝑖 = 0. For RHS to be equal to LHS we 
need:

𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 + 𝐶𝐶 = 0 ⇒ 𝐶𝐶 = 0

• So we already know that 𝐶𝐶 = 0.



Co-efficients 𝐴𝐴,𝐵𝐵

• IH: Assume that the proposition holds for 𝑛𝑛 ≥ 0. Then:

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛

• IS: We want to prove that

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 ⇒ �
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 𝐴𝐴(𝑛𝑛 + 1)2+𝐵𝐵(𝑛𝑛 + 1)



Co-efficients 𝐴𝐴,𝐵𝐵

• IH: Assume that the proposition holds for 𝑛𝑛 ≥ 0. Then:

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛

• IS: We want to prove that

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 ⇒ �
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = 𝐴𝐴(𝑛𝑛 + 1)2+𝐵𝐵(𝑛𝑛 + 1)

𝑃𝑃(𝑛𝑛 + 1)𝑃𝑃(𝑛𝑛)

𝑃𝑃(𝑛𝑛)



Co-efficients 𝐴𝐴,𝐵𝐵

�
𝑖𝑖=1

𝑛𝑛+1

𝑖𝑖 = �
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 + 𝑛𝑛 + 1 =𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 + (𝑛𝑛 + 1)

• We have to equate this to 𝐴𝐴(𝑛𝑛 + 1)2+𝐵𝐵(𝑛𝑛 + 1), since this is what 
we’re trying to prove:

𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 + 𝑛𝑛 + 1 = 𝐴𝐴 𝑛𝑛 + 1 2 + 𝐵𝐵 𝑛𝑛 + 1 ⇒
𝐴𝐴𝑛𝑛2 + 𝐵𝐵𝑛𝑛 + 𝑛𝑛 + 1 = 𝐴𝐴𝑛𝑛2 + 2𝐴𝐴𝑛𝑛 + 𝐴𝐴 + 𝐵𝐵𝑛𝑛 + 𝐵𝐵 ⇒

𝑛𝑛 + 1 = 2𝐴𝐴𝑛𝑛 + (𝐴𝐴 + 𝐵𝐵)

IH



Co-efficients 𝐴𝐴,𝐵𝐵

𝑛𝑛 + 1 = 2𝐴𝐴𝑛𝑛 + (𝐴𝐴 + 𝐵𝐵)
• This is an equality between polynomials of 𝑘𝑘, so equating the co-

efficients yields:
1 = 2𝐴𝐴
𝐴𝐴 + 𝐵𝐵 = 1



Co-efficients 𝐴𝐴,𝐵𝐵

𝑛𝑛 + 1 = 2𝐴𝐴𝑛𝑛 + (𝐴𝐴 + 𝐵𝐵)
• This is an equality between polynomials in 𝑛𝑛, so equating the co-

efficients yields:
1 = 2𝐴𝐴
𝐴𝐴 + 𝐵𝐵 = 1

• Note: The IS did not end up with TRUE, but with conditions on A,B for 
it to be TRUE.



All Our Constraints

1.  𝐶𝐶 = 0
2.  A+B = 1
3.  2 ⋅ 𝐴𝐴 = 1
• Algebra yields 𝐴𝐴 = 𝐵𝐵 = ⁄1 2 , so:

�
𝑖𝑖=0

𝑛𝑛

𝑖𝑖 =
1
2
𝑛𝑛2 +

1
2
𝑛𝑛 + 0 =

𝑛𝑛(𝑛𝑛 + 1)
2



What if Our Guess is Wrong (Over)?

1. Suppose we guess 

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴 ⋅ 𝑛𝑛3 + 𝐵𝐵 ⋅ 𝑛𝑛2 + 𝐶𝐶 ⋅ 𝑛𝑛 + 𝐷𝐷

2. This still works, we will just find 𝐴𝐴 = 0 (try it at home!)



What if Our Guess is Wrong (Under)?

1. Suppose we guess 

�
𝑖𝑖=1

𝑛𝑛

𝑖𝑖 = 𝐴𝐴 ⋅ 𝑛𝑛 + 𝐵𝐵

2. This does not work (infeasible equation), no 𝐴𝐴,𝐵𝐵 ∈ ℝ will satisfy 
the constraints (try it at home!)



Another Example (with Bounds!)

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 = �
2,  𝑛𝑛 = 0
50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑎𝑛𝑛.



Another Example (with Bounds!)

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 = �
2,  𝑛𝑛 = 0
50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑎𝑛𝑛.
• What kind of inductive structure am I expecting?

Weak Strong



Another Example (with Bounds!)

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 = �
2,  𝑛𝑛 = 0

50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Task: Find an upper bound for 𝑎𝑎𝑛𝑛.
• What kind of inductive structure am I expecting?

Weak Strong

An inductive base with > 1 
elements and a recursive rule 
with references to two prior 
terms hints towards strong 
induction…



Key Step

𝑎𝑎𝑛𝑛 = �
2,  𝑛𝑛 = 0

50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Because of our experience with sequences like Fibonacci, Tribonacci 
that all have this form, we suspect:

𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛,    𝐶𝐶,𝐷𝐷 ∈ ℝ 



Constraints on C

• IB: 
• 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 𝐷𝐷0 ⇔ 2 ≤ 𝐶𝐶 
• 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷1 ⇔ 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷



Inductive Hypothesis

• IB: 
• 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 𝐷𝐷0 ⇔ 2 ≤ 𝐶𝐶 
• 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷1 ⇔ 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷 

• IH: Let 𝑛𝑛 ≥ 1. Assume that ∀𝑖𝑖 ∈ 0, 1, 2, …𝑛𝑛 [𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑖𝑖 ]



Inductive Step

• IB: 
• 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 𝐷𝐷0 ⇔ 2 ≤ 𝐶𝐶 
• 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷1 ⇔ 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷 

• IH: Let 𝑛𝑛 ≥ 1. Assume that ∀𝑖𝑖 ∈ {0, 1, 2, …𝑛𝑛}, 𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑖𝑖 .
• IS:

∀𝑖𝑖 ∈ 0, 1, 2, …𝑛𝑛 [𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑖𝑖] ⇒ 𝑎𝑎𝑛𝑛+1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛+1



Inductive Step

• IS:
∀𝑖𝑖 ∈ 0, 1, 2, …𝑛𝑛 [𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑖𝑖] ⇒ 𝑎𝑎𝑛𝑛+1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛+1

• From the definition of 𝑎𝑎, we have 𝑎𝑎𝑛𝑛+1 = 10𝑎𝑎𝑛𝑛 + 3𝑎𝑎𝑛𝑛−1. Therefore,

𝑎𝑎𝑛𝑛+1 = 10𝑎𝑎𝑛𝑛 + 3𝑎𝑎𝑛𝑛−1 ≤ 10 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛 + 3 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛−1 (By IH)
• Want 10 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛 + 3 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛−1 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛+1



Inductive Step

• Want 
10 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛 + 3 ⋅ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛−1 ≤  𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛+1 ⇔
10 ⋅ 𝐷𝐷𝑛𝑛 + 3 ⋅ 𝐷𝐷𝑛𝑛−1 ≤  𝐷𝐷𝑛𝑛+1

• Dividing both sides by 𝐷𝐷𝑛𝑛−1 yields:

10𝐷𝐷 + 3 ≤  𝐷𝐷2



All Constraints

1. 2 ≤ 𝐶𝐶
2. 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷
3. 10𝐷𝐷 + 3 ≤  𝐷𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷𝐷 ∈ ℝ>0 that satisfies it: 



All Constraints

1. 2 ≤ 𝐶𝐶
2. 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷
3. 10𝐷𝐷 + 3 ≤  𝐷𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷𝐷 ∈ ℝ>0 that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T 

WANT TO SPEND TIME SOLVING 𝐷𝐷2 − 10𝐷𝐷 − 3 ≥ 0
• Smallest 𝐷𝐷 ∈ ℕ that satisfies it: 𝐷𝐷 = ⋯ ? ? ? (FIND ONE REAL QUICK, PLZ) 



All Constraints

1. 2 ≤ 𝐶𝐶
2. 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷
3. 10𝐷𝐷 + 3 ≤  𝐷𝐷2

• We deal with constraint 3 first.
• Smallest 𝐷𝐷 ∈ ℝ>0 that satisfies it: NO, WE ARE BUSY PEOPLE AND WE DON’T 

WANT TO SPEND TIME SOLVING 𝐷𝐷2 − 10𝐷𝐷 − 3 ≥ 0
• Smallest 𝐷𝐷 ∈ ℕ that satisfies it: 𝐷𝐷 = ⋯ ? ? ? (FIND ONE REAL QUICK, PLZ) 

𝐷𝐷 = 11 works! 



All Constraints

1. 2 ≤ 𝐶𝐶
2. 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷
3. 10𝐷𝐷 + 3 ≤  𝐷𝐷2

• Constraint (3) satisfied when 𝐷𝐷 ≥ 11 (just discussed)
• Since we want to find tight bounds for 𝑎𝑎𝑛𝑛, to minimize C, we select 
𝐷𝐷 = 11 and from constraint (2) we have: 50 ≤ 𝐶𝐶 ⋅ 11 ⇔ 𝐶𝐶 ≥ 4.55 ⇒
𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛 = 4.55



All Constraints

1. 2 ≤ 𝐶𝐶
2. 50 ≤ 𝐶𝐶 ⋅ 𝐷𝐷
3. 10𝐷𝐷 + 3 ≤  𝐷𝐷2

• Constraint (3) satisfied when 𝐷𝐷 ≥ 11 (just discussed)
• Since we want to find tight bounds for 𝑎𝑎𝑛𝑛, to minimize C, we select 
𝐷𝐷 = 11 and from constraint (2) we have: 50 ≤ 𝐶𝐶 ⋅ 11 ⇔ 𝐶𝐶 ≥ 4.55 ⇒
𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛 = 4.55
• Conclusion:

𝑎𝑎𝑛𝑛 ≤ 4.55 ⋅ 11𝑛𝑛



Work on This

• A slight modification on the previous sequence:

𝑎𝑎𝑛𝑛 = �
10,  𝑛𝑛 = 0
50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Assuming that we still suspect 𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛, you solve for the new 
𝐶𝐶,𝐷𝐷 right now!



Work on This

• A slight modification on the previous sequence:

𝑎𝑎𝑛𝑛 = �
10,  𝑛𝑛 = 0
50,  𝑛𝑛 = 1
10𝑎𝑎𝑛𝑛−1 + 3𝑎𝑎𝑛𝑛−2,𝑛𝑛 ≥ 2

• Assuming that we still suspect 𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝐷𝐷𝑛𝑛, solve for the new 𝐶𝐶,𝐷𝐷!
• Your solution ought to be 𝐶𝐶 = 10,𝐷𝐷 = 11. What do you observe?



Coin Problem

• In Celestia, there are only 7𝑐𝑐 and 10𝑐𝑐 coins. 
• We want to find the least monetary amount payable exclusively with 

such coins!
• In quantifiers (all quantifications assumed over ℕ)

∀𝑛𝑛 ≥ 𝐴𝐴 ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 7𝑛𝑛1 + 10𝑛𝑛2]

• Goal: Find constraints on A via constructive induction!
• IB: ???



Coin Problem

• In Celestia, there are only 7𝑐𝑐 and 10𝑐𝑐 coins. 
• We want to find the least monetary amount payable exclusively with 

such coins!
• In quantifiers (all quantifications assumed over ℕ)

∀𝑛𝑛 ≥ 𝐴𝐴 ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 7𝑛𝑛1 + 10𝑛𝑛2]

• Goal: Find constraints on A via constructive induction!
• IB: Defer for later!!!



Coin Problem

• In Celestia, there are only 7𝑐𝑐 and 10𝑐𝑐 coins. 
• We want to find the least monetary amount payable exclusively with such 

coins!
• In quantifiers (all quantifications assumed over ℕ)

∀𝑛𝑛 ≥ 𝐴𝐴 ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 7𝑛𝑛1 + 10𝑛𝑛2]

• Goal: Find constraints on A via constructive induction!
• IB: Defer for later!!!
• IH: Assume that for 𝑛𝑛 ≥ 𝐴𝐴, ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2



Coin Problem (IS)

• From the IH we have ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2
• How can we add/remove coins to get another cent?



Coin Problem (IS)

• From the IH we have ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2
• How can we add/remove coins to get another cent?

1. 𝑛𝑛2 ≥ 2 : Remove two 10𝑐𝑐 coins, add three 7𝑐𝑐 coins

𝑛𝑛 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 21 − 20
= 7 𝑛𝑛1 + 3 + 10(𝑛𝑛2 − 2)



Coin Problem (IS)

• From the IH we have ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2
• How can we add/remove coins to get another cent?

1. 𝑛𝑛2 ≥ 2 : Remove two 10𝑐𝑐 coins, add three 7𝑐𝑐 coins

𝑛𝑛 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 21 − 20
= 7 𝑛𝑛1 + 3 + 10(𝑛𝑛2 − 2)

2. 𝑛𝑛1 ≥ 7: Remove seven 7𝑐𝑐 coins, add five 10𝑐𝑐 coins 

𝑛𝑛 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 1 = 7𝑛𝑛1 + 10𝑛𝑛2 + 50 − 49
= 7 𝑛𝑛1 − 7 + 10(𝑛𝑛2 + 5)



Coin Problem (IS)

3. 𝑛𝑛1 ≤ 6 ∧ (𝑛𝑛2 ≤ 1): Max value is 6 ×  7 + 1 ×  10 = 52, so 𝑛𝑛 ≤ 52.



RECAP

• We’ve shown that if 𝑛𝑛 ≥ 53, then 

( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 ) ⇒ ( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 + 1 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 )

• For which 𝑛𝑛 do we know that ( ∃𝑎𝑎, 𝑏𝑏 ∈ ℕ 𝑛𝑛 = 7𝑎𝑎 + 10𝑏𝑏 ?

∀𝑛𝑛 ≥ 52 ∀𝑛𝑛 ≥ 53 Something 
Else



RECAP

• We’ve shown that if 𝑛𝑛 ≥ 53, then 

( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 ) ⇒ ( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 + 1 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 )

• For which 𝑛𝑛 do we know that ( ∃𝑎𝑎, 𝑏𝑏 ∈ ℕ 𝑛𝑛 = 7𝑎𝑎 + 10𝑏𝑏 ?

∀𝑛𝑛 ≥ 52 ∀𝑛𝑛 ≥ 53 Something 
Else

Only the implication holds! We don’t have 
any hard truth (base) about whether it 
EVER holds.



Coin Problem (IS)

3. 𝑛𝑛1 ≤ 6 ∧ (𝑛𝑛2 ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑛𝑛 ≤ 52.

• Condition: 𝐴𝐴 ≥ 53.
• Now I need a base case.
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [53 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2] 

Yes 
(which?) No



Coin Problem (IS)

3. 𝑛𝑛1 ≤ 6 ∧ (𝑛𝑛2 ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘𝑘 ≤ 52.

• Condition: 𝐴𝐴 ≥ 53. 
• Now I need a base case.
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [53 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2] 

Yes 
(which?) No

Prove it at home (use cases)



Coin Problem (IS)

3. 𝑛𝑛1 ≤ 6 ∧ (𝑛𝑛2 ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘𝑘 ≤ 52.

• Condition: 𝐴𝐴 ≥ 53. 
• Now I need a base case.
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [53 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2]
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [54 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2]

Yes 
(which?) No



Coin Problem (IS)

3. 𝑛𝑛1 ≤ 6 ∧ (𝑛𝑛2 ≤ 1): Max value is 6 × 7 + 1 × 10 = 52, so 𝑘𝑘 ≤ 52.

• Condition: 𝐴𝐴 ≥ 53. 
• Now I need a base case.
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [53 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2]
• ∃?𝑛𝑛1,𝑛𝑛2 ∈ ℕ [54 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2]

Yes 
(which?) No

𝑛𝑛1 = 2,
𝑛𝑛2 = 4



RECAP

• We’ve shown that if 𝑛𝑛 ≥ 53, then 

( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 ) ⇒ ( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 + 1 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 )

• We’ve also shown that ∃𝑟𝑟1, 𝑟𝑟2 ∈ ℕ 54 = 7𝑟𝑟1 + 10𝑟𝑟2 
(𝑟𝑟1 = 2, 𝑟𝑟2 = 4)



RECAP

• We’ve shown that if 𝑛𝑛 ≥ 53, then 

( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 ) ⇒ ( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 + 1 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 )

• We’ve also shown that ∃𝑟𝑟1, 𝑟𝑟2 ∈ ℕ 54 = 7𝑟𝑟1 + 10𝑟𝑟2 
(𝑟𝑟1 = 2, 𝑟𝑟2 = 4)

• What do we know NOW about the theorem?

True for 
𝑛𝑛 ≥ 52

True for 
𝑛𝑛 ≥ 53 NothingTrue for 

𝑛𝑛 ≥ 54



RECAP

• We’ve shown that if 𝑛𝑛 ≥ 53, then 

( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 ) ⇒ ( ∃𝑛𝑛1,𝑛𝑛2 𝑛𝑛 + 1 = 7 ⋅ 𝑛𝑛1 + 10𝑛𝑛2 )

• We’ve also shown that ∃𝑟𝑟1, 𝑟𝑟2 ∈ ℕ 54 = 7𝑟𝑟1 + 10𝑟𝑟2 
(𝑟𝑟1 = 2, 𝑟𝑟2 = 4)

• What do we know NOW about the theorem?

NothingTrue for 
𝑛𝑛 ≥ 52

True for 
𝑛𝑛 ≥ 53

True for 
𝑛𝑛 ≥ 54



What is A?

• Recall the theorem (all quantifiers over ℕ ):

∀𝑛𝑛 ≥ 𝐴𝐴 ∃𝑛𝑛1,𝑛𝑛2 [𝑛𝑛 = 7𝑛𝑛1 + 10𝑛𝑛2]

• Our goal was to find 𝐴𝐴.
• 𝐴𝐴 = 54 works, and is optimal, since 𝐴𝐴 = 53 does not work.



Question

• Is the theorem true for any 𝑛𝑛 ≤ 53?

Yes
(which?)

No
(Why?)



Question

• Is the theorem true for any 𝑛𝑛 ≤ 53?

0, 7, 10, 14, 17, 20, 21, 24, 27, 28, 30, 31, 34, 35, 37, 38, 40, 
41, 42, 44, 45,47, 48, 49, 50, 51, 52

• Note that there are gaps between these integers!

Yes
(which?)

No
(Why?)



And Here’s Another

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 =  �
0,  𝑛𝑛 = 0
2,  𝑛𝑛 = 1
𝑎𝑎 𝑛𝑛
2

+ 𝑎𝑎 𝑛𝑛
4

+ 5𝑛𝑛, 𝑛𝑛 ≥ 2

• Then, find 𝐶𝐶 ∈ ℝ such that 
∀𝑛𝑛 ∈ ℕ [𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛]



And Here’s Another

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 =  �
0,  𝑛𝑛 = 0
2,  𝑛𝑛 = 1
𝑎𝑎 𝑛𝑛
2

+ 𝑎𝑎 𝑛𝑛
4

+ 5𝑛𝑛, 𝑛𝑛 ≥ 2

• Then, find 𝐶𝐶 ∈ ℝ such that 
∀𝑛𝑛 ∈ ℕ [𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛]

• We proceed via strong induction on 𝑛𝑛.



And Here’s Another

• Let 𝑎𝑎 be a sequence defined as follows:

𝑎𝑎𝑛𝑛 =  �
0,  𝑛𝑛 = 0
2,  𝑛𝑛 = 1
𝑎𝑎 𝑛𝑛
2

+ 𝑎𝑎 𝑛𝑛
4

+ 5𝑛𝑛, 𝑛𝑛 ≥ 2

• Then, find 𝐶𝐶 ∈ ℝ such that 
∀𝑛𝑛 ∈ ℕ [𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛]

• We proceed via strong induction on 𝑛𝑛.
• In fact, to make some of the math easier, we will assume the hypothesis 

until 𝑃𝑃(𝑛𝑛 − 1) and prove the step for 𝑃𝑃(𝑛𝑛) instead of 𝑃𝑃(𝑛𝑛 + 1)



Finding C

• IB:
• For 𝑛𝑛 = 0, 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 0 ⇔ 0 ≤ 0. No constraints on 𝐶𝐶 yet! 
• For 𝑛𝑛 = 1, 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝑛𝑛 ⇔ 2 ≤ 𝐶𝐶. Done. We have our first lower bound for C.



Finding C

• IB:
• For 𝑛𝑛 = 0, 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 0 ⇔ 0 ≤ 0. No constraints on 𝐶𝐶 yet! 
• For 𝑛𝑛 = 1, 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝑛𝑛 ⇔ 2 ≤ 𝐶𝐶. Done. We have our first lower bound for C.

• IH: Let 𝑛𝑛 ≥ 𝟐𝟐. Then, assume (∀𝑖𝑖 ∈ {0,1, 2, … ,𝑛𝑛 − 1}[𝑃𝑃 𝑖𝑖 ], where 𝑃𝑃 𝑖𝑖  
means 𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝑖𝑖



Finding C

• IB:
• For 𝑛𝑛 = 0, 𝑎𝑎0 ≤ 𝐶𝐶 ⋅ 0 ⇔ 0 ≤ 0. No constraints on 𝐶𝐶 yet! 
• For 𝑛𝑛 = 1, 𝑎𝑎1 ≤ 𝐶𝐶 ⋅ 𝑛𝑛 ⇔ 2 ≤ 𝐶𝐶. Done. We have our first lower bound for C.

• IH: Let 𝑛𝑛 ≥ 𝟐𝟐. Then, assume (∀𝑖𝑖 ∈ {0,1, 2, … ,𝑛𝑛 − 1}[𝑃𝑃 𝑖𝑖 ], where 𝑃𝑃 𝑖𝑖  
means 𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝑖𝑖

• IS: We attempt to prove (𝑃𝑃 0 ∧ 𝑃𝑃 1 ∧ 𝑃𝑃 2 ∧ ⋯∧ 𝑃𝑃(𝑛𝑛 − 1)) ⇒ 𝑃𝑃 𝑛𝑛 :

�(𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝑖𝑖) ⇒ 𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛
𝑖𝑖 = 0

𝑖𝑖 = 𝑛𝑛 − 1



Finding C

• IS: We attempt to prove (𝑃𝑃 1 ∧ 𝑃𝑃 2 ∧ ⋯∧ 𝑃𝑃(𝑛𝑛 − 1)) ⇒ 𝑃𝑃 𝑛𝑛 :

�(𝑎𝑎𝑖𝑖 ≤ 𝐶𝐶 ⋅ 𝑖𝑖) ⇒ 𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛

• From the IH, and taking into consideration that 0 ≤ 𝑛𝑛
4

, 𝑛𝑛
2
≤ 𝑛𝑛, we 

have (next slide):

𝑖𝑖 = 0

𝑖𝑖 = 𝑛𝑛 − 1



Finding C

• From the IH, and taking into consideration that 0 ≤ 𝑛𝑛
4

, 𝑛𝑛
2
≤ 𝑛𝑛, we 

have:

 �
𝑎𝑎 �𝑛𝑛 4

≤ 𝐶𝐶 ⋅ �𝑛𝑛 4 ≤ 𝐶𝐶 ⋅
𝑛𝑛
4

𝑎𝑎 �𝑛𝑛 2
≤ 𝐶𝐶 ⋅ �𝑛𝑛 2 ≤ 𝐶𝐶 ⋅

𝑛𝑛
2

• 𝑎𝑎𝑛𝑛 = 𝑎𝑎⌊ ⁄𝑛𝑛 2⌋ + 𝑎𝑎 ⁄𝑛𝑛 4 + 5𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛
2

+ 𝐶𝐶 ⋅ 𝑛𝑛
4

+ 5𝑛𝑛 = 𝑛𝑛∗(3𝐶𝐶+20)
4



Finding C

• We have:

𝑎𝑎𝑛𝑛 ≤
𝑛𝑛∗(3𝐶𝐶+20)

4
• We want:

𝑎𝑎𝑛𝑛 ≤ 𝐶𝐶 ⋅ 𝑛𝑛

• Hence, we want a C such that:

𝑛𝑛 ∗ (3𝐶𝐶 + 20)
4

≤ 𝐶𝐶 ⋅ 𝑛𝑛



Finding C

𝑛𝑛 3𝐶𝐶 + 20
4

≤ 𝐶𝐶 ⋅ 𝑛𝑛 ⇔
3𝐶𝐶 + 20

4
≤ 𝐶𝐶 ⇔

3𝐶𝐶 + 20 ≤ 4𝐶𝐶 ⇔
𝐶𝐶 ≥ 20
⇒ 𝐶𝐶𝑚𝑚𝑖𝑖𝑛𝑛 = 20

𝒏𝒏 ≥ 𝟏𝟏



Constraints 

• From the IB: 𝐶𝐶 ≥ 2
• From the IS: 𝐶𝐶 ≥ 20
• Since we want to minimize 𝐶𝐶, we set 𝐶𝐶 = 20.



STOP 
RECORDING
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