Duplicator Spoiler Games Revisited

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.
2. D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.
2. D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
3. Repeat for k rounds.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.
2. D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L and k points of L^{\prime}.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.
2. D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L and k points of L^{\prime}.
5. If this map is order preserving D wins, else S wins.

Definition of the Game

Parameter Linear Orderings L, L^{\prime} and k.

1. S pick number in one orderings.
2. D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
3. Repeat for k rounds.
4. This process creates a map between k points of L and k points of L^{\prime}.
5. If this map is order preserving D wins, else S wins.

Our Interest Given L, L^{\prime} find the smallest k such that S wins.

What is Truth?

All sentences use the usual logic symbols and $<$.

What is Truth?

All sentences use the usual logic symbols and $<$.
Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

What is Truth?

All sentences use the usual logic symbols and $<$.
Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.
Example Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$

What is Truth?

All sentences use the usual logic symbols and $<$.
Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.
Example Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$

1. $\mathbb{Q} \models \phi$

What is Truth?

All sentences use the usual logic symbols and $<$.
Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.
Example Let $\phi=(\forall x)(\forall y)(\exists z)[x<y \Longrightarrow x<z<y]$

1. $\mathbb{Q} \models \phi$
2. $\mathbb{N} \models \neg \phi$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right.
$$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\begin{gathered}
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right. \\
\operatorname{qd}(\neg \phi(\vec{x}))=\operatorname{qd}(\phi(\vec{x})) .
\end{gathered}
$$

Quantifier Depth Formally

If $\phi(\vec{x})$ has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x}))=0$.
If $\alpha \in\{\wedge, \vee, \rightarrow\}$ then

$$
\begin{gathered}
\operatorname{qd}\left(\phi_{1}(\vec{x}) \alpha \phi_{2}(\vec{x})\right)=\max \left\{\operatorname{qd}\left(\phi_{1}(\vec{x}), \operatorname{qd}\left(\phi_{2}(\vec{x})\right)\right\} .\right. \\
\operatorname{qd}(\neg \phi(\vec{x}))=\operatorname{qd}(\phi(\vec{x})) .
\end{gathered}
$$

If $Q \in\{\exists, \forall\}$ then

$$
\operatorname{qd}\left(\left(Q x_{1}\right)\left[\phi\left(x_{1}, \ldots, x_{n}\right)\right]=\operatorname{qd}\left(\phi_{1}\left(x_{1}, \ldots, x_{n}\right)\right)+1\right.
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]]
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]]
$$

Lets take it apart

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]]
$$

Lets take it apart

$$
\operatorname{qd}((\exists y)[x<y<z])=1+0=1
$$

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]]
$$

Lets take it apart
$\operatorname{qd}((\exists y)[x<y<z])=1+0=1$.
$\operatorname{qd}(x<z \rightarrow(\exists y)[x<y<z])=\max \{0,1\}=1$.

Example of Quantifier Depth

$$
(\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]]
$$

Lets take it apart

$$
\begin{aligned}
& \operatorname{qd}((\exists y)[x<y<z])=1+0=1 \\
& \operatorname{qd}(x<z \rightarrow(\exists y)[x<y<z])=\max \{0,1\}=1
\end{aligned}
$$

$$
\operatorname{qd}((\forall x)(\forall z)[x<z \rightarrow(\exists y)[x<y<z]])=2+1=3
$$

Another Notion of L, L^{\prime} Similar

Let L and L^{\prime} be two linear orderings.

Another Notion of L, L^{\prime} Similar

Let L and L^{\prime} be two linear orderings.
Def L and L^{\prime} are k-truth-equiv $\left(\sum_{k}^{T} L^{\prime}\right)$

$$
(\forall \phi, q d(\phi) \leq k)\left[L \models \phi \text { iff } L^{\prime} \models \phi .\right]
$$

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$
2. $L \equiv{ }_{k}^{G} L^{\prime}$

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$
2. $L \equiv{ }_{k}^{G} L^{\prime}$

What technique is used to prove it?

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$
2. $L \equiv{ }_{k}^{G} L^{\prime}$

What technique is used to prove it? Induction on k.

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv_{k}^{T} L^{\prime}$
2. $L \equiv{ }_{k}^{G} L^{\prime}$

What technique is used to prove it? Induction on k.
The proof could be taught in this course but its a bit long and messy.

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$.
The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$
2. $L \equiv_{k}^{G} L^{\prime}$

What technique is used to prove it? Induction on k.
The proof could be taught in this course but its a bit long and messy.
I wish this was a year-long course. Do does Emily.

The Big Theorem

Thm Let L, L^{\prime} be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

1. $L \equiv{ }_{k}^{T} L^{\prime}$
2. $L \equiv_{k}^{G} L^{\prime}$

What technique is used to prove it? Induction on k.
The proof could be taught in this course but its a bit long and messy.
I wish this was a year-long course. Do does Emily.
Then she wouldn't have to TA the ordinary 250.

Applications

Applications

1. Density cannot be expressed with qd 2 .
(Proof: $\mathbb{Z} \equiv_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}$).

Applications

1. Density cannot be expressed with qd 2 .
(Proof: $\mathbb{Z} \equiv{ }_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)\left[\mathbb{N}+\mathbb{Z} \equiv{ }_{n}^{G} \mathbb{N}\right]$).

Applications

1. Density cannot be expressed with qd 2 . (Proof: $\mathbb{Z} \equiv{ }_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)\left[\mathbb{N}+\mathbb{Z} \equiv{ }_{n}^{G} \mathbb{N}\right]$).
3. Upshot: Questions about expressability become questions about games.

Applications

1. Density cannot be expressed with qd 2 .
(Proof: $\mathbb{Z} \equiv{ }_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} \equiv_{2}^{T} \mathbb{Q}$).
2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)\left[\mathbb{N}+\mathbb{Z} \equiv{ }_{n}^{G} \mathbb{N}\right]$).
3. Upshot: Questions about expressability become questions about games.
4. Complexity: As Computer Scientists we think of complexity in terms of time or space (e.g., sorting n elements can be done in roughly $n \log n$ comparisons). But how do you measure complexity for concepts where time and space do not apply? One measure is quantifier depth. These games help us prove LOWER BOUNDS on quantifier depth!

Proving DUP Wins Rigorously

Notation

The game where the orders are L and L^{\prime}, and its for n moves, will be denoted

$$
\left(L, L^{\prime} ; n\right)
$$

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$. IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:
Key The game is now 2 games.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:
Key The game is now 2 games.
$-<x$ in both orders: $\left(L_{x-1}, L_{x-1} ; n-1\right)$. SP will never play here.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:
Key The game is now 2 games.

- $<x$ in both orders: $\left(L_{x-1}, L_{x-1} ; n-1\right)$. SP will never play here.
- $>x$ in both orders: $\left(L_{a-x}, L_{b-x} ; n-1\right)$.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:
Key The game is now 2 games.

- $<x$ in both orders: $\left(L_{x-1}, L_{x-1} ; n-1\right)$. SP will never play here.
- $>x$ in both orders: $\left(L_{a-x}, L_{b-x} ; n-1\right)$.

Since $x \leq 2^{n-1}$ and $a, b \geq 2^{n}, a-x-1 \geq 2^{n-1}$ and $b-x-1 \geq 2^{n-1}$.

L_{a} and L_{b}

Thm For all n, if $a, b \geq 2^{n}$ then DUP wins $\left(L_{a}, L_{b} ; n\right)$.
IB $n=1$. DUP clearly wins $\left(L_{a}, L_{b} ; 1\right)$.
IH For all $a, b \geq 2^{n-1}$, DUP wins ($L_{a}, L_{b} ; n-1$).
IS We do 1 case: SP makes move $x \leq 2^{n-1}$ in L_{a}.
DUP respond with x in L_{b}. DUP views game as 2 GAMES:
Key The game is now 2 games.

- $<x$ in both orders: $\left(L_{x-1}, L_{x-1} ; n-1\right)$. SP will never play here.
- $>x$ in both orders: $\left(L_{a-x}, L_{b-x} ; n-1\right)$.

Since $x \leq 2^{n-1}$ and $a, b \geq 2^{n}, a-x-1 \geq 2^{n-1}$ and $b-x-1 \geq 2^{n-1}$.
By IH DUP wins ($L_{a-x}, L_{b-x} ; n-1$).

General Principle

General Principle

1. After the 1st move x in in L and the counter-move x^{\prime} in L^{\prime}, the game is now two boards,

General Principle

1. After the 1st move x in in L and the counter-move x^{\prime} in L^{\prime}, the game is now two boards,
$1.1 L^{<x}$ and $L^{\prime<x^{\prime}}$.

General Principle

1. After the 1st move x in in L and the counter-move x^{\prime} in L^{\prime}, the game is now two boards,
$1.1 L^{<x}$ and $L^{\prime<x^{\prime}}$.
$1.2 L^{>x}$ and $L^{\prime>x^{\prime}}$.

General Principle

1. After the 1st move x in in L and the counter-move x^{\prime} in L^{\prime}, the game is now two boards,
1.1 $L^{<x}$ and $L^{\prime<x^{\prime}}$.
$1.2 L^{>x}$ and $L^{\prime>x^{\prime}}$.
2. We might use induction on those smaller boards.

General Principle

1. After the 1st move x in in L and the counter-move x^{\prime} in L^{\prime}, the game is now two boards,
1.1 $L^{<x}$ and $L^{\prime<x^{\prime}}$.
$1.2 L^{>x}$ and $L^{\prime>x^{\prime}}$.
2. We might use induction on those smaller boards.
3. Might not need induction on the smaller boards if they are orderings we already proved things about.

$\mathbb{N}+\mathbb{N}^{*}$ and L_{a}

Thm For all n, if $a \geq 2^{n}$, DUP wins $\left(\mathbb{N}+\mathbb{N}^{*}, L_{a} ; n\right)$.

$\mathbb{N}+\mathbb{N}^{*}$ and L_{a}

Thm For all n, if $a \geq 2^{n}$, DUP wins $\left(\mathbb{N}+\mathbb{N}^{*}, L_{a} ; n\right)$. This is also by Induction. We Omit.

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N}-part of $\mathbb{N}+\mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N}-part of $\mathbb{N}+\mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are
$\left(L_{x}, L_{x} ; n-1\right)$ and $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.
SP won't play on 1st board.
The 2nd board DUP wins by IH.

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N}-part of $\mathbb{N}+\mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are
$\left(L_{x}, L_{x} ; n-1\right)$ and ($\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1$).
SP won't play on 1st board.
The 2nd board DUP wins by IH .
2) SP plays x in \mathbb{Z} part of $\mathbb{N}+\mathbb{Z}$ then DUP plays 2^{n} in \mathbb{N}. The 2 games are

\mathbb{N} and $\mathbb{N}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1)$.

1) SP plays x in either \mathbb{N} or \mathbb{N}-part of $\mathbb{N}+\mathbb{Z}$ then DUP counters with the same x in the other part. The 2 games are
$\left(L_{x}, L_{x} ; n-1\right)$ and ($\mathbb{N}, \mathbb{N}+\mathbb{Z} ; n-1$).
SP won't play on 1st board.
The 2nd board DUP wins by IH .
2) SP plays x in \mathbb{Z} part of $\mathbb{N}+\mathbb{Z}$ then DUP plays 2^{n} in \mathbb{N}. The 2 games are
$\left(\mathbb{N}+\mathbb{N}^{*}, L_{2^{n}} ; n-1\right)$ and $(\mathbb{N}, \mathbb{N} ; n-1)$.
SP won't play on 2nd board. DUP wins 1st board by prior thm.

\mathbb{Z} and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n)$.

\mathbb{Z} and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n)$.
$\mathrm{IB} n=1$. DUP clearly wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; 1)$.

\mathbb{Z} and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n-1)$.

\mathbb{Z} and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n-1)$.
SP 1st move is x is \mathbb{Z}. DUP picks x in first copy of \mathbb{Z} in $\mathbb{Z}+\mathbb{Z}$.

\mathbb{Z} and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n)$.
IB $n=1$. DUP clearly wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; 1)$.
IH DUP wins $(\mathbb{Z}, \mathbb{Z}+\mathbb{Z} ; n-1)$.
SP 1st move is x is \mathbb{Z}. DUP picks x in first copy of \mathbb{Z} in $\mathbb{Z}+\mathbb{Z}$.
I leave the rest to you

