Duplicator Spoiler Games Revisited

Parameter Linear Orderings L, L' and k.

1. S pick number in one orderings.

- 1. S pick number in one orderings.
- 2. **D** pick number in OTHER ORDERING. D will try to pick a point that most **looks like** the other point.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for *k* rounds.
- 4. This process creates a map between k points of L and k points of L'.

- 1. **S** pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.
- This process creates a map between k points of L and k points of L'.
- 5. If this map is order preserving D wins, else S wins.

Parameter Linear Orderings L, L' and k.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.
- This process creates a map between k points of L and k points of L'.
- 5. If this map is order preserving D wins, else S wins.

Our Interest Given L, L' find the smallest k such that S wins.

All sentences use the usual logic symbols and <.

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example Let $\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

1.
$$\mathbb{Q} \models \phi$$

All sentences use the usual logic symbols and <.

Def If L is a linear ordering and ϕ is a sentence then $L \models \phi$ means that ϕ is true in L.

Example Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

- 1. $\mathbb{Q} \models \phi$
- 2. $\mathbb{N} \models \neg \phi$

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$.

If $\phi(\vec{x})$ has 0 quantifiers then $\mathrm{qd}(\phi(\vec{x}))=0$. If $\alpha\in\{\wedge,\vee,\to\}$ then

If $\phi(\vec{x})$ has 0 quantifiers then $\mathrm{qd}(\phi(\vec{x}))=0$. If $\alpha\in\{\wedge,\vee,\to\}$ then $\mathrm{qd}(\phi_1(\vec{x})\ \alpha\ \phi_2(\vec{x}))=\max\{\mathrm{qd}(\phi_1(\vec{x}),\mathrm{qd}(\phi_2(\vec{x}))\}.$

If
$$\phi(\vec{x})$$
 has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x})) = 0$.
If $\alpha \in \{\land, \lor, \to\}$ then
$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$

If
$$\phi(\vec{x})$$
 has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x})) = 0$.
If $\alpha \in \{\land, \lor, \to\}$ then
$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$
If $Q \in \{\exists, \forall\}$ then
$$\operatorname{qd}((Qx_1)[\phi(x_1, \dots, x_n)] = \operatorname{qd}(\phi_1(x_1, \dots, x_n)) + 1.$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$\operatorname{qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$qd((\exists y)[x < y < z]) = 1 + 0 = 1.$$

 $qd(x < z \to (\exists y)[x < y < z]) = max\{0, 1\} = 1.$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$${\rm qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$qd(x < z \to (\exists y)[x < y < z]) = max\{0, 1\} = 1.$$

$$\operatorname{qd}((\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]) = 2 + 1 = 3$$

Another Notion of L, L' **Similar**

Let L and L' be two linear orderings.

Another Notion of L, L' **Similar**

Let L and L' be two linear orderings. **Def** L and L' are k-truth-equiv $(L \equiv_k^T L')$

$$(\forall \phi, qd(\phi) \leq k)[L \models \phi \text{ iff } L' \models \phi.]$$

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

1.
$$L \equiv_k^T L'$$

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- $2. \ L \equiv_k^G L'$

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L\equiv_k^G L'$

What technique is used to prove it?

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L\equiv_k^G L'$

What technique is used to prove it? Induction on k.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L\equiv_k^G L'$

What technique is used to prove it? Induction on k.

The proof could be taught in this course but its a bit long and messy.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L\equiv_k^G L'$

What technique is used to prove it? Induction on k.

The proof could be taught in this course but its a bit long and messy.

I wish this was a year-long course. Do does Emily.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L\equiv_k^G L'$

What technique is used to prove it? Induction on k.

The proof could be taught in this course but its a bit long and messy.

I wish this was a year-long course. Do does Emily.

Then she wouldn't have to TA the ordinary 250.

Applications

Applications

1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).

Applications

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} = {}_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} = {}_{2}^{T} \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).

Applications

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} = {}_{2}^{G} \mathbb{Q}$ so $\mathbb{Z} = {}_{2}^{T} \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).
- 3. Upshot: Questions about expressability become questions about games.

Applications

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$).
- 3. Upshot: Questions about expressability become questions about games.
- 4. Complexity: As Computer Scientists we think of complexity in terms of time or space (e.g., sorting n elements can be done in roughly n log n comparisons). But how do you measure complexity for concepts where time and space do not apply? One measure is quantifier depth. These games help us prove LOWER BOUNDS on quantifier depth!

Proving DUP Wins Rigorously

Notation

The game where the orders are L and L', and its for n moves, will be denoted

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$. IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n - 1)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$. IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n - 1)$. IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a . DUP respond with x in L_b . DUP views game as 2 GAMES:

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

> < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

- ightharpoonup < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- ightharpoonup > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

- > < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$. Since $x \le 2^{n-1}$ and $a, b \ge 2^n$, $a-x-1 \ge 2^{n-1}$ and $b-x-1 \ge 2^{n-1}$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

- > < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$. Since $x \le 2^{n-1}$ and $a, b \ge 2^n$, $a-x-1 \ge 2^{n-1}$ and $b-x-1 \ge 2^{n-1}$. By IH DUP wins $(L_{a-x}, L_{b-x}; n-1)$.

1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.
- 2. We might use induction on those smaller boards.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.
- 2. We might use induction on those smaller boards.
- Might not need induction on the smaller boards if they are orderings we already proved things about.

$$\mathbb{N} + \mathbb{N}^*$$
 and L_a

Thm For all n, if $a \geq 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$.

$$\mathbb{N} + \mathbb{N}^*$$
 and L_a

Thm For all n, if $a \ge 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$. This is also by Induction. We Omit.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$. **IB** n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$. IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$. IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

 $(L_x, L_x; n-1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

 $(L_x, L_x; n-1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

2) SP plays x in $\mathbb Z$ part of $\mathbb N+\mathbb Z$ then DUP plays 2^n in $\mathbb N$. The 2 games are

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

$$(L_x, L_x; n-1)$$
 and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

2) SP plays x in $\mathbb Z$ part of $\mathbb N+\mathbb Z$ then DUP plays 2^n in $\mathbb N$. The 2 games are

$$(\mathbb{N} + \mathbb{N}^*, L_{2^n}; n-1)$$
 and $(\mathbb{N}, \mathbb{N}; n-1)$.

SP won't play on 2nd board. DUP wins 1st board by prior thm.

$$\mathbb{Z}$$
 and $\mathbb{Z}+\mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n)$.

$$\mathbb{Z}$$
 and $\mathbb{Z} + \mathbb{Z}$

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n)$. IB n = 1. DUP clearly wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; 1)$.

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n)$. IB n = 1. DUP clearly wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; 1)$. IH DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n - 1)$.

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n-1)$.

SP 1st move is x is \mathbb{Z} . DUP picks x in first copy of \mathbb{Z} in $\mathbb{Z} + \mathbb{Z}$.

Thm For all n, DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{Z}, \mathbb{Z} + \mathbb{Z}; n-1)$.

SP 1st move is x is \mathbb{Z} . DUP picks x in first copy of \mathbb{Z} in $\mathbb{Z} + \mathbb{Z}$.

I leave the rest to you