
An Interesting Sum



Notation



Powerset

If A is a set then 2A is the powerset of A.

This is standard and I thought I had said it, but I didn’t so I am
saying it now.
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Examples of Sumsets

A = {1, 4, 5}.

2A = {∅, {1}, {4}, {5}, {1, 4}, {1, 5}, {4, 5}, {1, 4, 5}}
We look at the sums of each set in 2A.
SUM(∅) = 0
SUM({1}) = 1
SUM({4}) = 4
SUM({5}) = 5
SUM({1, 4}) = 1 + 4 = 5
SUM({1, 5}) = 1 + 5 = 6
SUM({4, 5}) = 4 + 5 = 9
SUM({1, 4, 5}) = 1 + 4 + 5 = 10.

SPS(1, 4, 5) = {0, 1, 4, 5, 6, 9, 10}.

Def SUM(A) is the sum of all the elements of A.
SPS(A) is the set of all SUM(B) as B ⊆ A.
Our Question What can |SPS(A)| be?
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Our Question



How Big Can SPS(A) Be?

If |A| = n then how many subsets of A are there?

2n.

Could SPS(A) be of size 2n? Work in groups to either

▶ find an A with |SPS(A)| = 2n, or

▶ show there is no such A.
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A Such that |SPS(A)| = 2n

Thm Let n ≥ 1. Let An = {21, . . . , 2n}. Then |SPS(A)| = 2n.

P(An) has 2n sets. We show all sum-sets diff.
Claim 1 If X ,Y ⊆ An have different largest number then
SUM(X ) ̸= SUM(Y ).
Assume
X ⊆ An and max{X} = 2i

Y ⊆ An and max{Y } = 2j

i < j .
SUM(X ) ≤ 21 + · · ·+ 2i = 2i+1 − 2.
SUM(Y ) ≥ 2j .
Since 2i+1 − 2 ≤ 2j − 2 < 2j , SUM(X ) < SUM(Y ).
Claim 2 If X ̸= Y but max{X} = max{Y } then
SUM(X ) ̸= SUM(Y ).
I leave this one for you.
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How Small Can SPS(A) Be?

Work in groups to find A ⊆ N so that SPS(A) is small.



A Such that |SPS(A)| ≤ n(n+1)
2

+ 1

An = {1, . . . , n}.

The minimum SUM is SUM(∅) = 0.

The maximum SUM is SUM({1, . . . , n}) = n(n+1)
2 .

So the only possible sums are 0, 1, 2, . . . , n(n+1)
2 .

So |SPS(An)| ≤ n(n+1)
2 + 1 sums.

Is |SPS(An)| = n(n+1)
2 + 1?

Vote Yes, No, Unknown to Bill.
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Example of SPS(1, . . . ,n)

SPS(1) = {0, 1}.
SPS(1, 2) = {0, 1, 2, 3}.
SPS(1, 2, 3) = {0, 1, 2, 3, 4, 5, 6}.
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SPS(1, . . . ,n) = {0, . . . , n(n+1)
2

}

Thm For all n ≥ 1, SPS(1, . . . , n) = {0, . . . , n(n+1)
2 }.

Pf We prove this by induction on n.
BS n = 1. SPS(1) = {0, 1}. Note n(n+1)

2 = 1.

IH SPS(1, . . . , n) = {0, . . . , n(n+1)
2 }.

IS Every subset of {1, . . . , n + 1} either:

▶ Does not use n + 1.
The number of sumsets for these is
|SPS(1, . . . , n)| = n(n+1)

2 + 1.

▶ Uses n + 1. So the sumsets are of the form n + 1 + x where
x ∈ SPS(1, . . . , n).
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For A ⊆ N, |SPS(A)| ≥ n(n+1)
2

+ 1

IB n = 1. A = {x1}. SPS(A) = {0, x1}. |SPS(A)| = 2 = 1×2
2 + 1.
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2 .

IS Want (∀x1, . . . , xn+1 ∈ N) |SPS(x1, . . . , xn+1)| ≥ (n+1)(n+2)
2 .

We can assume x1 < · · · < xn < xn+1.

SPS(x1, . . . , xn+1) has two kinds of sets.

1) SPS(x1, . . . , xn). By the IH there are ≥ n(n+1)
2 of these sums.

2) SUM(B) where B ⊆ {x1, . . . , xn+1} and xn+1 ∈ B.
We show ∃ ≥ n + 1 of these sums that are not in SPS(x1, . . . , xn).

Next Slide.
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For A ⊆ R>0, |SPS(A)| ≥ n(n+1)
2

+ 1 (cont)

Recap
x1 < · · · < xn+1.

We show ∃ ≥ n + 1 of these sums that are not in SPS(x1, . . . , xn).

Here are the n + 1 subsets.
0) {x1, . . . , xn, xn+1}.

1-n) For all 1 ≤ i ≤ n, {x1, . . . , xn, xn+1} − {xi}.

We need to show that there n+ 1 sums not in SPS(x1, . . . , xn) and
all differ from each other.
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For A ⊆ R>0, |SPS(A)| ≥ n(n+1)
2

+ 1 (cont)

Key The largest number in SPS(x1, . . . , xn) is x1 + · · ·+ xn.

0) x1 + · · ·+ xn + xn+1 > x1 + · · ·+ xn and hence bigger than
anything in SPS(x1, . . . , xn).
1-n) Need

x1+· · ·+xi−1+xi+1+· · ·+xn+1 > x1+· · ·+xi−1+xi+xi+1+· · ·+xn

xn+1 > xi .

So all these n + 1 new sums are > than anything in
SPS(x1, . . . , xn).
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For A ⊆ R>0, |SPS(A)| ≥ n(n+1)
2

+ 1 (cont)

Easy to show that the new n + 1 sums are all different from each
other.

|SPS(x1, . . . , xn+1)| ≥ |SPS(x1, . . . , xn)|+ n + 1

≥ n(n + 1)

2
+ n + 1 =

(n + 1)(n + 2)

2
.
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Other Domains



Recap What we Know Paying Attention to Domains

We have shown the following:

1. (∀n)(∃A ⊆ N)[|A| = n ∧ SPS(A)| = 2n]

2. (∀n)(∃A ⊆ N)[|A| = n ∧ SPS(A)| = n(n+1)
2 + 1]

3. (∀n)(∀A ⊆ N)[|A| = n → SPS(A)| ≥ n(n+1)
2 + 1]

What if we replace N with another domain?
This is two types of questions:

1. Domain math usually works with: Z, Q, R, C and variants
such as R≥0.

2. Unusual domains: Primes, Powers-of-two.
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Maximizing |SPS(A)|

(∀n)(∃A ⊆ X )[|A| = n ∧ SPS(A)| = 2n]

1. The above is true for any X that contains powers of 2.

2. Work in Groups: Either find an X where the above is False or
prove that, for all X , the above is True.
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Maximizing |SPS(A)|

(∀n)(∃A ⊆ X )[|A| = n ∧ SPS(A)| = 2n]

FALSE if X is finite. Perhaps you don’t want to count that.

TRUE If X is an infinite subset of N. Take numbers that are space
very far apart.
Proof that |SPS(X )| = 2n is similar to proof that
|SPS(20, . . . , 2n−1)| = 2n.

Vote TRUE, FALSE, or UNKNOWN TO BILL on the following
statement:
(∀X ⊆ R)(∀n)(∃A ⊆ X )[|A| = n ∧ SPS(A)| = 2n]
TRUE but I won’t prove it. Try on your own for X = [0, 1].
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|SPS(20, . . . , 2n−1)| = 2n.

Vote TRUE, FALSE, or UNKNOWN TO BILL on the following
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(∀X ⊆ R)(∀n)(∃A ⊆ X )[|A| = n ∧ SPS(A)| = 2n]

TRUE but I won’t prove it. Try on your own for X = [0, 1].
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