Strong Induction and Inequalities

Nice Recurrences

In the Strong Induction Slide Packet we studied the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 8 & \text { if } n=1 \\ a_{n-1}+2 a_{n-2} & \text { if } n \geq 2\end{cases}
$$

Nice Recurrences

In the Strong Induction Slide Packet we studied the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 8 & \text { if } n=1 \\ a_{n-1}+2 a_{n-2} & \text { if } n \geq 2\end{cases}
$$

The solution is

Nice Recurrences

In the Strong Induction Slide Packet we studied the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 8 & \text { if } n=1 \\ a_{n-1}+2 a_{n-2} & \text { if } n \geq 2\end{cases}
$$

The solution is

$$
a_{n}=3 \cdot 2^{n}+2(-1)^{n+1}
$$

Nice Recurrences

In the Strong Induction Slide Packet we studied the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{1}\\ 8 & \text { if } n=1 \\ a_{n-1}+2 a_{n-2} & \text { if } n \geq 2\end{cases}
$$

The solution is
$a_{n}=3 \cdot 2^{n}+2(-1)^{n+1}$. NICE SOLUTION!

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula
(2) BOO- hard to use numerically.

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula
(2) BOO- hard to use numerically.
(3) YEAH- Bill thinks it's Jawesome (Jaw-Dropping Awesome).

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula
(2) BOO- hard to use numerically.
(3) YEAH- Bill thinks it's Jawesome (Jaw-Dropping Awesome).
(4) BOO- Emily thinks it's gross.

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula
(2) BOO- hard to use numerically.
(3) YEAH- Bill thinks it's Jawesome (Jaw-Dropping Awesome).
(4) BOO- Emily thinks it's gross.
(5) It could be worse.

Sort-of Nice Recurrences

Bill told you that the recurrence

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{2}\\ 1 & \text { if } n=1 \\ a_{n-1}+a_{n-2} & \text { if } n \geq 2\end{cases}
$$

has solution:

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

NICE SOLUTION?
(1) YEAH- an exact formula
(2) BOO- hard to use numerically.
(3) YEAH- Bill thinks it's Jawesome (Jaw-Dropping Awesome).
(4) BOO- Emily thinks it's gross.
(5) It could be worse. Next Slide.

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE YES, and it only involves integers

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE YES, and it only involves integers
YES, but it involves irrationals

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE YES, and it only involves integers
YES, but it involves irrationals NO.

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE YES, and it only involves integers
YES, but it involves irrationals
NO.
The answer is
YES, but it involves irrationals. See next slide for exact form.

Not Nice

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{3}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Does this have a closed form solution? VOTE YES, and it only involves integers
YES, but it involves irrationals NO.
The answer is
YES, but it involves irrationals. See next slide for exact form.
Bill and Emily both thing that the exact form is gross and not very informative.
We will prove an UPPER BOUND that IS nice.

The Grossest Mathematical Formula In This Course

$$
\alpha=(226-6 \sqrt{327})^{1 / 3}, \beta=\left(2(113+3 \sqrt{327})^{1 / 3}, c_{1}, c_{2}, c_{3} \in \mathbb{C} .\right.
$$

The Grossest Mathematical Formula In This Course

$$
\begin{aligned}
& \alpha=(226-6 \sqrt{327})^{1 / 3}, \beta=\left(2(113+3 \sqrt{327})^{1 / 3}, c_{1}, c_{2}, c_{3} \in \mathbb{C} .\right. \\
& g(n)=
\end{aligned}
$$

$$
\begin{gathered}
c_{1}\left(\frac{1}{3}-\frac{1}{6}(1+i \sqrt{3}) \beta-\frac{(1-i \sqrt{3}) \alpha}{3 \times 2^{2 / 3}}\right)^{n}+ \\
c_{2}\left(\frac{1}{3}-\frac{1}{6}(1-i \sqrt{3}) \beta-\frac{(1+i \sqrt{3}) \alpha}{3 \times 2^{2 / 3}}\right)^{n}+ \\
c_{3}\left(\frac{3}{1+\alpha+\beta}\right)^{-n}
\end{gathered}
$$

The Grossest Mathematical Formula In This Course

$$
\begin{aligned}
& \alpha=(226-6 \sqrt{327})^{1 / 3}, \beta=\left(2(113+3 \sqrt{327})^{1 / 3}, c_{1}, c_{2}, c_{3} \in \mathbb{C} .\right. \\
& g(n)=
\end{aligned}
$$

$$
\begin{gathered}
c_{1}\left(\frac{1}{3}-\frac{1}{6}(1+i \sqrt{3}) \beta-\frac{(1-i \sqrt{3}) \alpha}{3 \times 2^{2 / 3}}\right)^{n}+ \\
c_{2}\left(\frac{1}{3}-\frac{1}{6}(1-i \sqrt{3}) \beta-\frac{(1+i \sqrt{3}) \alpha}{3 \times 2^{2 / 3}}\right)^{n}+ \\
c_{3}\left(\frac{3}{1+\alpha+\beta}\right)^{-n}
\end{gathered}
$$

Gross and not enlightenting.

What Would be Enlightening?

What Would be Enlightening?

- Knowing the exact value of $g(n)$ is not enlightening.

What Would be Enlightening?

- Knowing the exact value of $g(n)$ is not enlightening.
- Knowing an approximation to $g(n)$ is enlightening.

What Would be Enlightening?

- Knowing the exact value of $g(n)$ is not enlightening.
- Knowing an approximation to $g(n)$ is enlightening.
- Knowing an upper bound on $g(n)$ is enlightening.

Upper Bound

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{4}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

$\operatorname{Thm}(\forall n)\left[a_{n} \leq 5^{n}\right]$

Upper Bound

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{4}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Thm $(\forall n)\left[a_{n} \leq 5^{n}\right]$
Base Case $a_{0}=1 \leq 5^{0}=1$ YES. Also $a_{1}=2 \leq 5^{1}=5$.

Upper Bound

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{4}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Thm $(\forall n)\left[a_{n} \leq 5^{n}\right]$
Base Case $a_{0}=1 \leq 5^{0}=1$ YES. Also $a_{1}=2 \leq 5^{1}=5$.
IH $n \geq 2$. $\left(\forall n^{\prime}<n\right)\left[a_{n^{\prime}} \leq 5^{n^{\prime}}\right]$. In particular
$a_{n-1} \leq 5^{n-1}$,
$a_{n-2} \leq 5^{n-2}$,
$a_{n-3} \leq 5^{n-3}$.

Upper Bound

$$
a_{n}= \begin{cases}1 & \text { if } n=0 \tag{4}\\ 2 & \text { if } n=1 \\ 3 & \text { if } n=2 \\ a_{n-1}+11 a_{n-2}+13 a_{n-3} & \text { if } n \geq 2\end{cases}
$$

Thm $(\forall n)\left[a_{n} \leq 5^{n}\right]$
Base Case $a_{0}=1 \leq 5^{0}=1$ YES. Also $a_{1}=2 \leq 5^{1}=5$.
IH $n \geq 2$. $\left(\forall n^{\prime}<n\right)\left[a_{n^{\prime}} \leq 5^{n^{\prime}}\right]$. In particular
$a_{n-1} \leq 5^{n-1}$,
$a_{n-2} \leq 5^{n-2}$,
$a_{n-3} \leq 5^{n-3}$.
Finish on next slide.

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall

$$
a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}
$$

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall

$$
a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}
$$

$$
a_{n-1}+11 a_{n-2}+13 a_{n-3} \leq 5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} .
$$

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall
$a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}$.

$$
a_{n-1}+11 a_{n-2}+13 a_{n-3} \leq 5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3}
$$

We WANT this to be $\leq 5^{n}$. Lets see:

$$
5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} \leq 5^{n}
$$

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall

$$
a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}
$$

$$
a_{n-1}+11 a_{n-2}+13 a_{n-3} \leq 5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3}
$$

We WANT this to be $\leq 5^{n}$. Lets see:

$$
5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} \leq 5^{n}
$$

Divide by 5^{n-3} to get

$$
5^{2}+11 \times 5+13 \times 1 \leq 5^{3}
$$

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall

$$
a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}
$$

$$
a_{n-1}+11 a_{n-2}+13 a_{n-3} \leq 5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} .
$$

We WANT this to be $\leq 5^{n}$. Lets see:

$$
5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} \leq 5^{n}
$$

Divide by 5^{n-3} to get

$$
5^{2}+11 \times 5+13 \times 1 \leq 5^{3}
$$

$$
25+55+13 \leq 125
$$

Upper Bound

Recall $a_{n}=a_{n-1}+11 a_{n-2}+13 a_{n-3}$.
Recall

$$
a_{n-1} \leq 5^{n-1} \quad a_{n-2} \leq 5^{n-2} \quad a_{n-3} \leq 5^{n-3}
$$

$$
a_{n-1}+11 a_{n-2}+13 a_{n-3} \leq 5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} .
$$

We WANT this to be $\leq 5^{n}$. Lets see:

$$
5^{n-1}+11 \times 5^{n-2}+13 \times 5^{n-3} \leq 5^{n}
$$

Divide by 5^{n-3} to get

$$
\begin{gathered}
5^{2}+11 \times 5+13 \times 1 \leq 5^{3} \\
25+55+13 \leq 125
\end{gathered}
$$

$93 \leq 125$ TRUE!

How did I Know to take 5^{n} ?

(1) Fib: f_{n} depends on f_{n-1} and f_{n-2}. Fib is exponential.

How did I Know to take 5^{n} ?

(1) Fib: f_{n} depends on f_{n-1} and f_{n-2}. Fib is exponential.
(2) $a_{n}: a_{n}$ depends on $a_{n-1}, a_{n-2}, a_{n-3}$: We guess exponential.

How did I Know to take 5^{n} ?

(1) Fib: f_{n} depends on f_{n-1} and f_{n-2}. Fib is exponential.
(2) $a_{n}: a_{n}$ depends on $a_{n-1}, a_{n-2}, a_{n-3}$: We guess exponential.
(3) I did proof with α^{n}; found least $\alpha \in \mathbb{N}$ that made proof work.

How did I Know to take 5^{n} ?

(1) Fib: f_{n} depends on f_{n-1} and f_{n-2}. Fib is exponential.
(2) $a_{n}: a_{n}$ depends on $a_{n-1}, a_{n-2}, a_{n-3}:$ We guess exponential.
(3) I did proof with α^{n}; found least $\alpha \in \mathbb{N}$ that made proof work.
(4) Could use this to find an exact α, but messy so we won't.

How did I Know to take 5^{n} ?

(1) Fib: f_{n} depends on f_{n-1} and f_{n-2}. Fib is exponential.
(2) $a_{n}: a_{n}$ depends on $a_{n-1}, a_{n-2}, a_{n-3}:$ We guess exponential.
(3) I did proof with α^{n}; found least $\alpha \in \mathbb{N}$ that made proof work.
(4) Could use this to find an exact α, but messy so we won't.
(5) This is called Constructive Induction. It's the topic of the next slide packet.

