More Induction Problems CMSC 250

1. Prove $21 \mid\left(4^{n+1}+5^{2 n-1}\right)$ for every positive integer n.
2. Prove that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

3. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 3 & n=2 \\ a_{n-2}+2 a_{n-1} & n \geq 3\end{cases}
$$

Prove that a_{n} is odd for all integers $n \geq 1$.
4. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 2 & n=2 \\ \sum_{i=1}^{n-1}(i-1) a_{i} & n \geq 3\end{cases}
$$

Prove that $a_{n}=(n-1)$! for all integers $n \geq 3$.
5. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 2 & n=2 \\ \frac{a_{n-1}}{a_{n-2}} & n \geq 3\end{cases}
$$

(a) Prove that

$$
a_{n}=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 1,4 & (\bmod 6) \\
2 & \text { if } n \equiv 2,3 & (\bmod 6) \\
\frac{1}{2} & \text { if } n \equiv 0,5 & (\bmod 6)
\end{array}\right.
$$

for all positive integers n.
(b) Prove that for all nonnegative integers $j, \sum_{i=1}^{6} a_{j+i}=7$
6. Use Constructive Induction to find constants A, B, C for

$$
\sum_{i=1}^{n} 4 i-3=A n^{2}+B n+C .
$$

7. Use Constructive Induction to find constants A, B, C, D for

$$
\sum_{i=1}^{n} i(i+2)=A n^{3}+B n^{2}+C n+D .
$$

8. Use Constructive Induction to find constants A, B, C for

$$
a_{n}= \begin{cases}1 & n=1 \\ 4 & n=2 \\ 9 & n=3 \\ a_{n-1}-a_{n-2}+a_{n-3}+2(2 n-3) & n \geq 4\end{cases}
$$

such that $a_{n}=A n^{2}+B n+C$.
9. Use Constructive Induction to a constant A bound for

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}
$$

such that $a_{n} \leq A n$

