More Induction Problems CMSC 250

1. Prove $21 \mid\left(4^{n+1}+5^{2 n-1}\right)$ for every positive integer n.

Proof:
Base Case: Let $n=1$. So, $4^{n+1}+5^{2 n-1}=4^{1+1}+5^{2(1)-1}=16+5=21$. Since $21 \mid 21$, our base holds.
Inductive Hypothesis: Assume for some integer positive integer k, $21 \mid\left(4^{k+1}+5^{2 k-1}\right)$.
Inductive Step: Consider $n=k+1$. So,

$$
\begin{gathered}
4^{k+1+1}+5^{2(k+1)-1} \\
4^{k+2}+5^{2 k+1} \\
(4) 4^{k+1}+5^{2}\left(5^{2 k-1}\right) \\
(4) 4^{k+1}+25\left(5^{2 k-1}\right) \\
(4) 4^{k+1}+(21+4)\left(5^{2 k-1}\right) \\
(4) 4^{k+1}+21\left(5^{2 k-1}\right)+4\left(5^{2 k-1}\right) \\
4\left(4^{k+1}+5^{2 k-1}\right)+21\left(5^{2 k-1}\right)
\end{gathered}
$$

From our inductive hypothesis, we know $21 \mid 4^{k+1}+5^{2 k-1}$. Since $21 \mid 21$, $21 \mid\left(4\left(4^{k+1}+5^{2 k-1}\right)+21\left(5^{2 k-1}\right)\right)$. Therefore by PMI, our statement holds)
2. Prove that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

Proof:
Base Case: Let $n=1$. Then,

$$
\begin{gathered}
2(\sqrt{1+1}-1) \\
=2(\sqrt{2}-1) \\
\quad \approx 0.828
\end{gathered}
$$

Since $1>0.828$, our base case holds.
Inductive Hypothesis: Assume for some integer $k \geq 1$,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}>2(\sqrt{k+1}-1)
$$

Inductive Step: Let $n=k+1$. So,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}
$$

From our inductive hypothesis, we have

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}>2(\sqrt{k+1}-1)+\frac{1}{\sqrt{k+1}}
$$

Note that we need to show

$$
2(\sqrt{k+1}-1)+\frac{1}{\sqrt{k+1}}>2(\sqrt{(k+2)}-1)
$$

So,

$$
\begin{gathered}
\frac{1}{\sqrt{k+1}}>2(\sqrt{(k+2)}-1)-2(\sqrt{k+1}-1) \\
\frac{1}{\sqrt{k+1}}>2(\sqrt{(k+2)}-\sqrt{k+1})
\end{gathered}
$$

Note that we can turn

$$
2(\sqrt{(k+2)}-\sqrt{k+1})
$$

into

$$
2(\sqrt{k+2}-\sqrt{k+1})(\sqrt{k+2}+\sqrt{k+1})
$$

So,

$$
\frac{\sqrt{k+1}}{\sqrt{k+1}}+\frac{\sqrt{k+2}}{\sqrt{k+1}}>2(\sqrt{k+2}-\sqrt{k+1})(\sqrt{k+2}+\sqrt{k+1})
$$

Thus,

$$
2<1+\frac{\sqrt{k+2}}{\sqrt{k+1}}
$$

This is true as $k \geq 1$. Therefore by PMI, our statement holds. ()
3. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 3 & n=2 \\ a_{n-2}+2 a_{n-1} & n \geq 3\end{cases}
$$

Prove that a_{n} is odd for all integers $n \geq 1$.
Proof by Induction:
Base Cases:
Let $n=11$ is odd
Let $n=23$ is odd
So, our base cases hold.
Inductive Hypothesis: Assume $k \geq 2$ and that a_{i} is odd for all integers with $1 \leq i \leq k$.
Inductive Step: Consider, $n=k+1$. So,

$$
a_{k+1}=a_{k-1}+2 a_{k}
$$

By our inductive hypothesis, a_{k-1} and a_{k} are odd. So $a_{k-1}=2 h+1$ and $a_{k}=2 m+1$ where $h, m \in \mathbb{Z}$. So,

$$
\begin{gathered}
a_{k+1}=2 h+1+2(2 m+1) \\
=2 h+1+4 m+2 \\
=2 h+4 m+2+1 \\
=2(h+2 m+1)+1
\end{gathered}
$$

Therefore, a_{k+1} is odd. So, by principle of mathematical induction, our statement holds. 1
4. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 2 & n=2 \\ \sum_{i=1}^{n-1}(i-1) a_{i} & n \geq 3\end{cases}
$$

Prove that $a_{n}=(n-1)$! for all integers $n \geq 3$.
Proof by Induction:
Base Cases:

Let $n=3$. Consider,

$$
\begin{gathered}
a_{3}=\sum_{i=1}^{n-1}(i-1) a_{i} \\
=(1-1)(1)+(2-1)(2)=0+2=2
\end{gathered}
$$

Now consider, $(n-1)$!.

$$
(n-1)!=(3-1)!=2!=2
$$

Since $a_{3}=2, a_{3}=(n-1)$!. So, our base case holds.
Inductive Hypothesis: Assume for some $k \geq 3, a_{k}=(k-1)$! Inductive Step: Let $n=k+1$. So,

$$
\begin{aligned}
& a_{k+1}=\sum_{i=1}^{k}(i-1) a_{i} \\
= & \sum_{i=1}^{k-1}(i-1) a_{i}+(k-1) a_{k}
\end{aligned}
$$

Note: $\sum_{i=1}^{k-1}(i-1) a_{i}=a_{k}$. So,

$$
=a_{k}+(k-1) a_{k}
$$

By our inductive hypothesis,

$$
\begin{gathered}
=(k-1)!+(k-1)(k-1)! \\
=(k-1)!(1+k-1) \\
=(k-1)!(k) \\
=k!
\end{gathered}
$$

Therefore by principle of mathematical induction, our statement holds.)

5. Given

$$
a_{n}= \begin{cases}1 & n=1 \\ 2 & n=2 \\ \frac{a_{n-1}}{a_{n-2}} & n \geq 3\end{cases}
$$

(a) Prove that

$$
a_{n}=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 1,4 & (\bmod 6) \\
2 & \text { if } n \equiv 2,3 & (\bmod 6) \\
\frac{1}{2} & \text { if } n \equiv 0,5 & (\bmod 6)
\end{array}\right.
$$

for all positive integers n.
Base Case:
Let $n=1$. Since $a_{n}=1$ and $n \equiv 1(\bmod 6)$, this case holds.
Let $n=2$. Since $a_{n}=2$ and $n \equiv 2(\bmod 6)$, this case holds.
Inductive Hypothesis: Assume for some $k \geq 2$ and $1 \leq i \leq k$,

$$
a_{i}=\left\{\begin{array}{lll}
1 & \text { if } i \equiv 1,4 & (\bmod 6) \\
2 & \text { if } i \equiv 2,3 & (\bmod 6) \\
\frac{1}{2} & \text { if } i \equiv 0,5 & (\bmod 6)
\end{array}\right.
$$

Inductive Step: Let $n=k+1$. So, $a_{k+1}=\frac{a_{k}}{a_{k-1}}$. Consider the cases,

Case 1 : Let $k-1 \equiv 0(\bmod 6)$ and $k \equiv 1(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{1}{\frac{1}{2}}=2
$$

Note if $k-1 \equiv 0(\bmod 6)$ and $k \equiv 1(\bmod 6), k+1 \equiv 2(\bmod 6)$. So this case holds.

Case 2 : Let $k-1 \equiv 1(\bmod 6)$ and $k \equiv 2(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{2}{1}=2
$$

Note if $k-1 \equiv 1(\bmod 6)$ and $k \equiv 2(\bmod 6), k+1 \equiv 3(\bmod 6)$. So this case holds.

Case 3 : Let $k-1 \equiv 2(\bmod 6)$ and $k \equiv 3(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{2}{2}=1
$$

Note if $k-1 \equiv 2(\bmod 6)$ and $k \equiv 3(\bmod 6), k+1 \equiv 4(\bmod 6)$. So this case holds.

Case 4: Let $k-1 \equiv 3(\bmod 6)$ and $k \equiv 4(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{1}{2}
$$

Note if $k-1 \equiv 3(\bmod 6)$ and $k \equiv 4(\bmod 6), k+1 \equiv 5(\bmod 6)$. So this case holds.

Case 5 : Let $k-1 \equiv 4(\bmod 6)$ and $k \equiv 5(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{\frac{1}{2}}{1}=\frac{1}{2}
$$

Note if $k-1 \equiv 4(\bmod 6)$ and $k \equiv 5(\bmod 6), k+1 \equiv 0(\bmod 6)$. So this case holds.

Case 5 : Let $k-1 \equiv 5(\bmod 6)$ and $k \equiv 0(\bmod 6)$. By our inductive hypothesis,

$$
a_{k+1}=\frac{\frac{1}{2}}{\frac{1}{2}}=1
$$

Note if $k-1 \equiv 5(\bmod 6)$ and $k \equiv 0(\bmod 6), k+1 \equiv 1(\bmod 6)$. So this case holds.

Therefore, by Principle of Mathematical Induction, our statement holds. D
(b) Prove that for all nonnegative integers $j, \sum_{i=1}^{6} a_{j+i}=7$

Base Case:
Let $j=0$. So,

$$
\begin{gathered}
\sum_{i=1}^{6} a_{i}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6} \\
\quad=1+2+2+1+\frac{1}{2}+\frac{1}{2}=7 .
\end{gathered}
$$

Our base case holds.
Inductive Hypothesis: Assume for some $k \geq 0, \sum_{i=1}^{6} a_{k+i}=7$

Inductive Step: Let $j=k+1$. So,

$$
\begin{gathered}
\sum_{i=1}^{6} a_{k+1+i}=a_{k+2}+a_{k+3}+a_{k+4}+a_{k+5}+a_{k+6}+a_{k+7} \\
=\left(a_{k+1}+a_{k+2}+a_{k+3}+a_{k+4}+a_{k+5}+a_{k+6}\right)+a_{k+7}-a_{k+1} \\
=\left(\sum_{i=1}^{6} a_{k+i}\right)+a_{k+7}-a_{k+1}
\end{gathered}
$$

By our inductive hypothesis,

$$
=7+a_{k+7}-a_{k+1} .
$$

Consider the cases,
Case 1: Let $k=0 . k+1 \equiv 1(\bmod 6)$ and $k+7 \equiv 1(\bmod 6)$. So,

$$
=7+a_{k+7}-a_{k+1}=7+1-1=7
$$

So this case holds.

Case 2: Let $k=1 . k+1 \equiv 2(\bmod 6)$ and $k+7 \equiv 2(\bmod 6)$. So,

$$
=7+a_{k+7}-a_{k+1}=7+2-2=7 .
$$

So this case holds.
Case 3: Let $k=2 . k+1 \equiv 3(\bmod 6)$ and $k+7 \equiv 3(\bmod 6)$. So,

$$
=7+a_{k+7}-a_{k+1}=7+2-2=7 .
$$

So this case holds.
Case 4: Let $k=3 . k+1 \equiv 4(\bmod 6)$ and $k+7 \equiv 4(\bmod 6)$. So,

$$
=7+a_{k+7}-a_{k+1}=7+1-1=7 .
$$

So this case holds.

Case 5: Let $k=4 . k+1 \equiv 5(\bmod 6)$ and $k+7 \equiv 5(\bmod 6)$.
So,

$$
=7+a_{k+7}-a_{k+1}=7+\frac{1}{2}-\frac{1}{2}=7 .
$$

So this case holds.
Case 6: Let $k=5 . k+1 \equiv 0(\bmod 6)$ and $k+7 \equiv 0(\bmod 6)$. So,

$$
=7+a_{k+7}-a_{k+1}=7+\frac{1}{2}-\frac{1}{2}=7 .
$$

So this case holds.

Therefore, by Principle of Mathematical Induction, our statement holds. D
6. Use Constructive Induction to find constants A, B, C for

$$
\sum_{i=1}^{n} 4 i-3=A n^{2}+B n+C
$$

Let us guess that

$$
\sum_{i=1}^{n} 4 i-3=A n^{2}+B n+C
$$

Base Case: Let $n=1$. So,

$$
\begin{gathered}
\sum_{i=1}^{1} 4 i-3=1 \\
1=A(1)^{2}+B(1)+C \\
1=A+B+C
\end{gathered}
$$

Inductive Hypothesis: Assume for some $n \geq 1$,

$$
\sum_{i=1}^{n} 4 i-3=A n^{2}+B n+C
$$

Inductive Step: Consider $n+1$. So,

$$
\sum_{i=1}^{n+1} 4 i-3=\sum_{i=1}^{n} 4 i-3+4(n+1)-3
$$

By our Inductive Hypothesis,

$$
A n^{2}+B n+C+4(n+1)-3
$$

So,

$$
\begin{gathered}
A n^{2}+B n+C+4(n+1)-3=A(n+1)^{2}+B(n+1)+C \\
A n^{2}+B n+C+4 n+1=A\left(n^{2}+2 n+1\right)+B(n+1)+C \\
A n^{2}+B n+C+4 n+1=A n^{2}+2 A n+A+B n+B+C \\
4 n+1=2 A n+A+B
\end{gathered}
$$

Thus,

$$
\begin{gathered}
4=2(A) \\
1=A+B
\end{gathered}
$$

So, $A=2$ and $B=-1$. From the Base Case, we had

$$
1=A+B+C
$$

So, $C=0$. Thus our solution give us

$$
\sum_{i=1}^{n} 4 i-3=2 n^{2}+-n
$$

7. Use Constructive Induction to find constants A, B, C, D for

$$
\sum_{i=1}^{n} i(i+2)=A n^{3}+B n^{2}+C n+D
$$

Let is guess that

$$
a_{n}=A n^{3}+B n^{2}+C n+D
$$

Base Case:

Let $n=1$. So,

$$
\begin{gathered}
\sum_{i=1}^{1} i(i+2)=1(1+2)=3 \\
A+B+C+D=3
\end{gathered}
$$

Inductive Hypothesis:

Assume for some $n \geq 1$,

$$
\sum_{i=1}^{n} i(i+2)=A n^{3}+B n^{2}+C n+D
$$

Inductive Step:

Consider $n+1$.

$$
\sum_{i=1}^{n+1} i(i+2)=\sum_{i=1}^{n} i(i+2)+(n+1)(n+3)
$$

By inductive hypothesis,

$$
\begin{aligned}
& A n^{3}+B n^{2}+C n+D+(n+1)(n+3)=A(n+1)^{3}+B(n+1)^{2}+C(n+1)+D \\
& A n^{3}+B n^{2}+C n+D+n^{2}+4 n+3=A\left(n^{3}+3 n^{2}+3 n+1\right)+B\left(n^{2}+2 n+1\right)+C(n+1)+D \\
& A n^{3}+B n^{2}+C n+D+n^{2}+4 n+3=A n^{3}+3 A n^{2}+3 A n+A+B n^{2}+2 B n+B+C n+C+D \\
& \quad n^{2}+4 n+3=3 A n^{2}+3 A n+A+2 B n+B+C
\end{aligned}
$$

Therefore we have the equations,

$$
\begin{gathered}
1=3 A \\
4=3 A+2 B \\
3=A+B+C
\end{gathered}
$$

Thus, $A=\frac{1}{3}, B=\frac{3}{2}, C=\frac{7}{6}$, and $D=0$. Hence,

$$
\sum_{i=1}^{n} i(i+2)=\frac{1}{3} n^{3}+\frac{3}{2} n^{2}+\frac{7}{6} n
$$

8. Use Constructive Induction to find constants A, B, C for

$$
a_{n}= \begin{cases}1 & n=1 \\ 4 & n=2 \\ 9 & n=3 \\ a_{n-1}-a_{n-2}+a_{n-3}+2(2 n-3) & n \geq 4\end{cases}
$$

such that $a_{n}=A n^{2}+B n+C$.
Let us guess that

$$
a_{n}=A n^{2}+B n+C
$$

Base Case:

Consider $n=1$,

$$
\begin{gathered}
1=A(1)^{2}+B(1)+C \\
1=A+B+C
\end{gathered}
$$

Consider $n=2$,

$$
\begin{gathered}
4=A(2)^{2}+B(2)+C \\
4=4 A+2 B+C
\end{gathered}
$$

Consider $n=3$,

$$
\begin{gathered}
1=A(3)^{2}+B(3)+C \\
9=9 A+3 B+C
\end{gathered}
$$

Inductive Hypothesis: Assume for some $n \geq 3$ and $1 \leq i \leq n$,

$$
a_{i}=A i^{2}+B i+C
$$

Inductive Step: Consider $n+1$. So,

$$
a_{n+1}=a_{n}-a_{n-1}+a_{n-2}+2(2(n+1)-3)
$$

By our inductive hypothesis,

$$
a_{n}-a_{n-1}+a_{n-2}+2(2 n-3)
$$

$$
\begin{aligned}
& =\left(A n^{2}+B n+C\right)-\left(A(n-1)^{2}+B(n-1)+C\right)+\left(A(n-2)^{2}+B(n-2)+C\right)+4 n-2 \\
& =\left(A n^{2}+B n+C\right)+\left(-A n^{2}+2 A n-A-B n+B-C\right)+\left(A n^{2}-4 A n+4 A+B n-2 B+C\right)+4 n-2 \\
& \quad=A n^{2}-2 A n+3 A+B n-B+C+4 n-2
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
A n^{2}-2 A n+3 A+B n-B+C+4 n-2=A(n+1)^{2}+B(n+1)+C \\
A n^{2}+(-2 A n+B n+4 n)+(3 A-B+C-2)=A\left(n^{2}+2 n+1\right)+B(n+1)+C \\
A n^{2}+(-2 A n+B n+4 n)+(3 A-B+C-2)=A n^{2}+2 A n+A+B n+B+C \\
A n^{2}+(-2 A n+B n+4 n)+(3 A-B+C-2)=A n^{2}+(2 A n+B n)+(A+B+C) \\
(-2 A n+4 n)+(3 A-B-2)=(2 A n)+(A+B) \\
(4 n)+(-2)=(4 A n)+(-2 A+2 B) .
\end{gathered}
$$

So, we have the equations

$$
4=4 A
$$

and

$$
-2=-2 A+2 B .
$$

Thus, $A=1$ and $B=0$. Now we must go back to our base cases. So,

$$
\begin{gathered}
1=1+0+C \\
4=4(1)+2(0)+C \\
9=9(1)+3(0)+C
\end{gathered}
$$

Therefore, $C=0$. Hence, $a_{n}=n^{2}$.
9. Use Constructive Induction to a constant A bound for

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}
$$

such that $a_{n} \leq A n$
Let us guess that

$$
a_{n} \leq A n
$$

Base Case:

Consider $n=1$,

$$
\begin{gathered}
\sum_{i=1}^{1} \frac{1}{(i+2)(i+3)}=\frac{1}{(1+2)(1+3)} \\
=\frac{1}{(3)(4)}
\end{gathered}
$$

So,

$$
\frac{1}{12} \leq A n
$$

Inductive Hypothesis:

Assume for some $n \geq 1$,

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)} \leq A n
$$

Inductive Step:

Consider $n+1$. So,

$$
\begin{gathered}
\sum_{i=1}^{n+1} \frac{1}{(i+2)(i+3)}=\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}+\frac{1}{[(n+1)+2][(n+1)+3]} \\
=\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}+\frac{1}{(n+3)(n+4)}
\end{gathered}
$$

By inductive hypothesis,

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}+\frac{1}{(n+3)(n+4)} \leq A n+\frac{1}{(n+3)(n+4)}
$$

Therefore,

$$
\begin{aligned}
A n+\frac{1}{(n+3)(n+4)} & \leq A(n+1) \\
A n+\frac{1}{(n+3)(n+4)} & \leq A n+A \\
\frac{1}{(n+3)(n+4)} & \leq A
\end{aligned}
$$

Therefore, $A=\frac{1}{12}$. Hence,

$$
\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)} \leq \frac{1}{12} n
$$

