Reciprocal Theorems

THE Reciprocal Theorem

Thm
$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$$
 such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

THE Reciprocal Theorem

Thm
$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$$
 such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

We will proof this theorem an infinite number of ways.

THE Reciprocal Theorem

Thm
$$(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$$
 such that $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

We will proof this theorem an infinite number of ways.

All of them will be by induction.

We will usually only need the n=3 base case:

We will usually only need the n=3 base case:

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.$$

We will usually only need the n=3 base case:

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.$$

We may sometimes need the n = 4 base case:

We will usually only need the n=3 base case:

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.$$

We may sometimes need the n = 4 base case:

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{8} + \frac{1}{24} = 1.$$

Proof One

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{d_n+1} + \frac{1}{d_n(d_n+1)}$.

$$1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n} = \frac{1}{d_1} + \cdots + \frac{1}{d_{n-1}} + \frac{1}{d_n + 1} + \frac{1}{d_n(d_n + 1)}.$$

Proof Two. Bigger Base Case and $P(n) \rightarrow P(n+2)$

Bill wants to prove $(\forall n \geq 3)[P(n)]$.

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves P(3)

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

P(3)

P(4)

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

P(3)

P(4)

 $(\forall n \geq 3)[P(n) \rightarrow P(n+2)].$

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

P(3)

P(4)

$$(\forall n \geq 3)[P(n) \rightarrow P(n+2)].$$

This Works! From the above you can construct a proof of P(n) for any $n \ge 3$.

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

P(3)

P(4)

$$(\forall n \geq 3)[P(n) \rightarrow P(n+2)].$$

This Works! From the above you can construct a proof of P(n) for any $n \ge 3$.

For the case at hand we already did the n=3 and n=4 base case.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+2)$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+2)$. We use that $\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+2)$. We use that $\frac{1}{d_n} = \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}$.

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-1}} + \frac{1}{2d_n} + \frac{1}{3d_n} + \frac{1}{6d_n}.$$

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

Can we use any way to write 1 as a sum of reciprocals?

Proof 2 used

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

by using

$$\frac{1}{d} = \frac{1}{2d} + \frac{1}{3d} + \frac{1}{6d}$$

Can we use any way to write 1 as a sum of reciprocals?

Our next proof does this and make some other points of interest.

Proof Three. Load the IH

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

Can we use this?

Note that

$$1 = \frac{1}{3/2} + \frac{1}{3}.$$

Hence

$$\frac{1}{d}=\frac{1}{3d/2}+\frac{1}{3d}.$$

Can we use this?

Lets try to use it manually.

Working Things Out By Hand

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}.$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} :$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d} :$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

Can we keep doing this?

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

Can we keep doing this? Yes.

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

Can we keep doing this? Yes.

Can we make this process into a rigorous proof?

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

Can we keep doing this? Yes.

Can we make this process into a rigorous proof? Discuss

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$
. Use

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{6} = \frac{1}{9} + \frac{1}{18}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{18}$$

$$\frac{1}{d} = \frac{1}{3d/2} + \frac{1}{3d}$$
: $\frac{1}{18} = \frac{1}{27} + \frac{1}{54}$

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{54}$$

Can we keep doing this? Yes.

Can we make this process into a rigorous proof? Discuss It works so long as the last number is $\equiv 0 \pmod{2}$.

Convention \equiv means \equiv (mod 2).

```
Convention \equiv means \equiv (mod 2).
Thm (\forall n \geq 3)(\exists d_1 < \cdots < d_n) such that
```

```
Convention \equiv means \equiv \pmod{2}.

Thm (\forall n \geq 3)(\exists d_1 < \cdots < d_n) such that d_n \equiv 0 \pmod{2}, and
```

```
Convention \equiv means \equiv (mod 2).

Thm (\forall n \geq 3)(\exists d_1 < \cdots < d_n) such that d_n \equiv 0 \pmod{2}, and 1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.
```

```
Convention \equiv means \equiv\pmod{2}.

Thm (\forall n \geq 3)(\exists d_1 < \cdots < d_n) such that d_n \equiv 0 \pmod{2}, and 1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}.

We are demanding more, since we demand d_n \equiv 0.
```

But we get to use this in the IH.

Convention \equiv means $\equiv\pmod{2}$. **Thm** $(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$ such that $d_n \equiv 0 \pmod{2}$, and $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$. We are demanding more, since we demand $d_n \equiv 0$.

Convention
$$\equiv$$
 means \equiv (mod 2).
Thm $(\forall n \geq 3)(\exists d_1 < \cdots < d_n)$ such that $d_n \equiv 0 \pmod 2$, and $1 = \frac{1}{d_1} + \cdots + \frac{1}{d_n}$.

We are demanding more, since we demand $d_n \equiv 0$.

But we get to use this in the IH.

Loading the IH Proving a harder theorem so that the IH is stronger.

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$.

We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.

IB
$$d = 3$$
. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$. We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.

Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

IB d = 3. $1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$, $6 \equiv 0$.

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that $d_n \equiv 0$ and

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IS We prove $P(n) \rightarrow P(n+1)$.

We use that $\frac{1}{d_n} = \frac{1}{3d_n/2} + \frac{1}{3d_n}$.

Since $d_n \equiv 0$, $3d_n/2 \in \mathbb{N}$.

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n} = \frac{1}{d_1} + \dots + \frac{1}{d_{n-1}} + \frac{1}{3d_n/2} + \frac{1}{3d_n}.$$

Also NEED that the last number is $\equiv 0$. It is since $3d_n \equiv d_n \equiv 0$.

Proof Four. A Different Approach

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

$$\frac{1}{2} = \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$

IH $n \ge 3$. There exists $d_1 < \cdots < d_n$ such that

$$1=\frac{1}{d_1}+\cdots+\frac{1}{d_n}.$$

$$1 = \frac{1}{d_1} + \dots + \frac{1}{d_n}.$$

$$\frac{1}{2} = \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$

$$1 = \frac{1}{2} + \frac{1}{2d_1} + \dots + \frac{1}{2d_n}.$$