Reciprocal Theorems

THE Reciprocal Theorem

Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that $1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.

THE Reciprocal Theorem

Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that $1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.

We will proof this theorem an infinite number of ways.

THE Reciprocal Theorem

Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that $1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.

We will proof this theorem an infinite number of ways.
All of them will be by induction.

Base Case for All of the Proofs

We will usually only need the $n=3$ base case:

Base Case for All of the Proofs

We will usually only need the $n=3$ base case:
$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.

Base Case for All of the Proofs

We will usually only need the $n=3$ base case:
$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
We may sometimes need the $n=4$ base case:

Base Case for All of the Proofs

We will usually only need the $n=3$ base case:
$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
We may sometimes need the $n=4$ base case:
$\frac{1}{2}+\frac{1}{3}+\frac{1}{8}+\frac{1}{24}=1$.

Proof One

4ロ〉4句

IH+IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}
$$

IH+IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.

IH+IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}
$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_{n}}=\frac{1}{d_{n}+1}+\frac{1}{d_{n}\left(d_{n}+1\right)}$.

IH+IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_{n}}=\frac{1}{d_{n}+1}+\frac{1}{d_{n}\left(d_{n}+1\right)}$.

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n-1}}+\frac{1}{d_{n}+1}+\frac{1}{d_{n}\left(d_{n}+1\right)}
$$

Proof Two. Bigger Base Case and
 $$
P(n) \rightarrow P(n+2)
$$

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$.

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves
$P(3)$

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves
$P(3)$
$P(4)$

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves
$P(3)$
$P(4)$
$(\forall n \geq 3)[P(n) \rightarrow P(n+2)]$.

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves
$P(3)$
$P(4)$
$(\forall n \geq 3)[P(n) \rightarrow P(n+2)]$.
This Works! From the above you can construct a proof of $P(n)$ for any $n \geq 3$.

An Induction Scheme

Bill wants to prove $(\forall n \geq 3)[P(n)]$. So Bill proves
$P(3)$
$P(4)$
$(\forall n \geq 3)[P(n) \rightarrow P(n+2)]$.
This Works! From the above you can construct a proof of $P(n)$ for any $n \geq 3$.
For the case at hand we already did the $n=3$ and $n=4$ base case.

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+2)$.

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+2)$.
We use that $\frac{1}{d_{n}}=\frac{1}{2 d_{n}}+\frac{1}{3 d_{n}}+\frac{1}{6 d_{n}}$.

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+2)$.
We use that $\frac{1}{d_{n}}=\frac{1}{2 d_{n}}+\frac{1}{3 d_{n}}+\frac{1}{6 d_{n}}$.

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n-1}}+\frac{1}{2 d_{n}}+\frac{1}{3 d_{n}}+\frac{1}{6 d_{n}} .
$$

Generalization of Proof Two

Proof 2 used

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

by using

Generalization of Proof Two

Proof 2 used

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

by using

$$
\frac{1}{d}=\frac{1}{2 d}+\frac{1}{3 d}+\frac{1}{6 d}
$$

Generalization of Proof Two

Proof 2 used

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

by using

$$
\frac{1}{d}=\frac{1}{2 d}+\frac{1}{3 d}+\frac{1}{6 d}
$$

Can we use any way to write 1 as a sum of reciprocals?

Generalization of Proof Two

Proof 2 used

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

by using

$$
\frac{1}{d}=\frac{1}{2 d}+\frac{1}{3 d}+\frac{1}{6 d}
$$

Can we use any way to write 1 as a sum of reciprocals?
Our next proof does this and make some other points of interest.

Proof Three．Load the IH

Key Equation

Note that

$$
1=\frac{1}{3 / 2}+\frac{1}{3}
$$

Key Equation

Note that

$$
1=\frac{1}{3 / 2}+\frac{1}{3}
$$

Hence

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}
$$

Key Equation

Note that

$$
1=\frac{1}{3 / 2}+\frac{1}{3}
$$

Hence

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}
$$

Can we use this?

Key Equation

Note that

$$
1=\frac{1}{3 / 2}+\frac{1}{3}
$$

Hence

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}
$$

Can we use this?
Lets try to use it manually.

Working Things Out By Hand

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}
$$

Working Things Out By Hand

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use }
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}:
\end{aligned}
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18}
\end{aligned}
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \begin{array}{c}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18}
\end{array}
\end{aligned}
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \begin{array}{l}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18} \\
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}:
\end{array}
\end{aligned}
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \begin{array}{c}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18} \\
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54}
\end{array}
\end{aligned}
$$

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \begin{array}{l}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18} \\
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}
\end{array}
\end{aligned}
$$

Working Things Out By Hand

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$. Use

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18}
$$

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18}
$$

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54}
$$

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}$
Can we keep doing this?

Working Things Out By Hand

$$
\begin{aligned}
& 1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} \text {. Use } \\
& \qquad \begin{array}{l}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18} \\
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}
\end{array}
\end{aligned}
$$

Can we keep doing this? Yes.

Working Things Out By Hand

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$. Use

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18}
$$

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18}
$$

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54}
$$

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}$
Can we keep doing this? Yes.
Can we make this process into a rigorous proof?

Working Things Out By Hand

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$. Use

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18}
$$

$$
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18}
$$

$$
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54}
$$

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}$
Can we keep doing this? Yes.
Can we make this process into a rigorous proof? Discuss

Working Things Out By Hand

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$. Use

$$
\begin{gathered}
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{6}=\frac{1}{9}+\frac{1}{18} \\
1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{18} \\
\frac{1}{d}=\frac{1}{3 d / 2}+\frac{1}{3 d}: \quad \frac{1}{18}=\frac{1}{27}+\frac{1}{54}
\end{gathered}
$$

$1=\frac{1}{2}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{54}$
Can we keep doing this? Yes.
Can we make this process into a rigorous proof? Discuss It works so long as the last number is $\equiv 0(\bmod 2)$.

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that $d_{n} \equiv 0(\bmod 2)$, and

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that
$d_{n} \equiv 0(\bmod 2)$, and
$1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that
$d_{n} \equiv 0(\bmod 2)$, and
$1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.
We are demanding more, since we demand $d_{n} \equiv 0$.

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that
$d_{n} \equiv 0(\bmod 2)$, and
$1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.
We are demanding more, since we demand $d_{n} \equiv 0$.
But we get to use this in the IH.

Proof a Harder Theorem

Convention \equiv means $\equiv(\bmod 2)$.
Thm $(\forall n \geq 3)\left(\exists d_{1}<\cdots<d_{n}\right)$ such that
$d_{n} \equiv 0(\bmod 2)$, and
$1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}$.
We are demanding more, since we demand $d_{n} \equiv 0$.
But we get to use this in the IH.
Loading the IH Proving a harder theorem so that the IH is stronger.

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.
IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that $d_{n} \equiv 0$ and

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.
IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that $d_{n} \equiv 0$ and

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.
IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that $d_{n} \equiv 0$ and

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_{n}}=\frac{1}{3 d_{n} / 2}+\frac{1}{3 d_{n}}$.

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.
IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that $d_{n} \equiv 0$ and

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_{n}}=\frac{1}{3 d_{n} / 2}+\frac{1}{3 d_{n}}$.
Since $d_{n} \equiv 0,3 d_{n} / 2 \in \mathbb{N}$.

IH and IS

IB $d=3.1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}, 6 \equiv 0$.
IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that $d_{n} \equiv 0$ and

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}
$$

IS We prove $P(n) \rightarrow P(n+1)$.
We use that $\frac{1}{d_{n}}=\frac{1}{3 d_{n} / 2}+\frac{1}{3 d_{n}}$.
Since $d_{n} \equiv 0,3 d_{n} / 2 \in \mathbb{N}$.

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n-1}}+\frac{1}{3 d_{n} / 2}+\frac{1}{3 d_{n}} .
$$

Also NEED that the last number is $\equiv 0$. It is since $3 d_{n} \equiv d_{n} \equiv 0$.

Proof Four. A Different Approach

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}
$$

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}}
$$

IS We prove $P(n) \rightarrow P(n+1)$.

$$
\begin{gathered}
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} \\
\frac{1}{2}=\frac{1}{2 d_{1}}+\cdots+\frac{1}{2 d_{n}} .
\end{gathered}
$$

IH and IS

IH $n \geq 3$. There exists $d_{1}<\cdots<d_{n}$ such that

$$
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} .
$$

IS We prove $P(n) \rightarrow P(n+1)$.

$$
\begin{gathered}
1=\frac{1}{d_{1}}+\cdots+\frac{1}{d_{n}} . \\
\frac{1}{2}=\frac{1}{2 d_{1}}+\cdots+\frac{1}{2 d_{n}} . \\
1=\frac{1}{2}+\frac{1}{2 d_{1}}+\cdots+\frac{1}{2 d_{n}} .
\end{gathered}
$$

