Untimed Midterm Two Solutions

An Interesting Sum

An Interesting Sum

May use $(n-1)^{11} \sim n^{11}-11 n^{10}$.
BY CONSTRUCTIVE INDUCTION find A such that

$$
(\forall n \geq 100)\left[\sum_{i=100}^{n} i^{10} \leq A n^{11}\right]
$$

Base Case

$$
\text { IB } n=100 . \sum_{i=100}^{100} i^{10}=100^{10} .
$$

Base Case

$$
\text { IB } n=100 . \sum_{i=100}^{100} i^{10}=100^{10}
$$

We need

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{10}=100^{10}$.
We need

$$
100^{10} \leq A \times 100^{11}
$$

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{10}=100^{10}$.
We need

$$
\begin{aligned}
& 100^{10} \leq A \times 100^{11} \\
& A \geq \frac{100^{10}}{100^{11}}=\frac{1}{100}
\end{aligned}
$$

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{10}=100^{10}$.
We need

$$
\begin{aligned}
& 100^{10} \leq A \times 100^{11} \\
& A \geq \frac{100^{10}}{100^{11}}=\frac{1}{100}
\end{aligned}
$$

So the constraint is $A \geq \frac{1}{100}$.

IH and IS

$\mathrm{IH} \sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.

IH and IS

IH $\sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.
IS

$$
\sum_{i=100}^{n} i^{10}=\left(\sum_{i=100}^{n-1} i^{10}\right)+n^{10} \leq A(n-1)^{11}+n^{10}
$$

We need

IH and IS

IH $\sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.
IS

$$
\sum_{i=100}^{n} i^{10}=\left(\sum_{i=100}^{n-1} i^{10}\right)+n^{10} \leq A(n-1)^{11}+n^{10}
$$

We need

$$
A(n-1)^{11}+n^{10} \leq A n^{11}
$$

IH and IS

$\mathrm{IH} \sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.
IS

$$
\sum_{i=100}^{n} i^{10}=\left(\sum_{i=100}^{n-1} i^{10}\right)+n^{10} \leq A(n-1)^{11}+n^{10}
$$

We need

$$
\begin{gathered}
A(n-1)^{11}+n^{10} \leq A n^{11} \\
n^{10} \leq A n^{11}-A(n-1)^{11} \sim A n^{11}-A\left(n^{11}-11 n^{10}\right)
\end{gathered}
$$

IH and IS

IH $\sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.
IS

$$
\sum_{i=100}^{n} i^{10}=\left(\sum_{i=100}^{n-1} i^{10}\right)+n^{10} \leq A(n-1)^{11}+n^{10}
$$

We need

$$
\begin{gathered}
A(n-1)^{11}+n^{10} \leq A n^{11} \\
n^{10} \leq A n^{11}-A(n-1)^{11} \sim A n^{11}-A\left(n^{11}-11 n^{10}\right) \\
n^{10} \leq A n^{11}-A n^{11}+11 A n^{10}=11 A n^{10}
\end{gathered}
$$

IH and IS

IH $\sum_{i=100}^{n-1} i^{10} \leq A(n-1)^{11}$.
IS

$$
\sum_{i=100}^{n} i^{10}=\left(\sum_{i=100}^{n-1} i^{10}\right)+n^{10} \leq A(n-1)^{11}+n^{10}
$$

We need

$$
\begin{gathered}
A(n-1)^{11}+n^{10} \leq A n^{11} \\
n^{10} \leq A n^{11}-A(n-1)^{11} \sim A n^{11}-A\left(n^{11}-11 n^{10}\right) \\
n^{10} \leq A n^{11}-A n^{11}+11 A n^{10}=11 A n^{10} \\
A \geq \frac{1}{11}
\end{gathered}
$$

Picking A

The two constraints on A are

1. $A \geq \frac{1}{100}$, and
2. $A \geq \frac{1}{11}$.

Hence we choose $A=\frac{1}{11}$.

Generalization of an Interesting Sum

Generalization of Interesting Sum

May use $(n-1)^{a} \sim n^{a}-a n^{a-1}$.
BY CONSTRUCTIVE INDUCTION find a constant B such that

$$
(\forall n \geq 100)\left[\sum_{i=100}^{n} i^{a} \leq B n^{a+1}\right]
$$

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{a}=(100)^{a}$. We need that

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{a}=(100)^{a}$. We need that

$$
100^{a} \leq B \times 100^{a+1}
$$

Base Case

IB $n=100 . \sum_{i=100}^{100} i^{a}=(100)^{a}$. We need that

$$
100^{a} \leq B \times 100^{a+1}
$$

So the constraint is

$$
B \geq \frac{100^{a}}{100^{a+1}}=\frac{1}{100}
$$

IH and IS

$\mathrm{IH}: \sum_{i=100}^{n-1} i^{\mathrm{a}} \leq B(n-1)^{\mathrm{a}+1}$.

IH and IS

IH: $\sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

IH and IS

$\mathrm{IH}: \sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

We need

IH and IS

IH: $\sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

We need

$$
B(n-1)^{a+1}+n^{a} \leq B n^{a+1}
$$

IH and IS

IH: $\sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

We need

$$
B(n-1)^{a+1}+n^{a} \leq B n^{a+1}
$$

$$
n^{a} \leq B n^{a+1}-B(n-1)^{a+1} \sim B n^{a+1}-B\left(n^{a+1}-(a+1) n^{a}\right)
$$

IH and IS

IH: $\sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

We need

$$
B(n-1)^{a+1}+n^{a} \leq B n^{a+1}
$$

$$
\begin{gathered}
n^{a} \leq B n^{a+1}-B(n-1)^{a+1} \sim B n^{a+1}-B\left(n^{a+1}-(a+1) n^{a}\right) . \\
\left.n^{a} \leq B n^{a+1}-B n^{a+1}+(a+1) B n^{a}\right)=(a+1) B n^{a}
\end{gathered}
$$

IH and IS

IH: $\sum_{i=100}^{n-1} i^{a} \leq B(n-1)^{a+1}$.
IS:

$$
\sum_{i=100}^{n} i^{a}=\sum_{i=100}^{n-1} i^{a}+n^{a} \leq B(n-1)^{a+1}+n^{a}
$$

We need

$$
B(n-1)^{a+1}+n^{a} \leq B n^{a+1}
$$

$$
\begin{gathered}
n^{a} \leq B n^{a+1}-B(n-1)^{a+1} \sim B n^{a+1}-B\left(n^{a+1}-(a+1) n^{a}\right) . \\
\left.n^{a} \leq B n^{a+1}-B n^{a+1}+(a+1) B n^{a}\right)=(a+1) B n^{a} \\
B
\end{gathered}
$$

Picking B

The two constraints on B are

Picking B

The two constraints on B are

1. $B \geq \frac{1}{100}$, and

Picking B

The two constraints on B are

1. $B \geq \frac{1}{100}$, and
2. $B \geq \frac{1}{a+1}$.

Picking B

The two constraints on B are

1. $B \geq \frac{1}{100}$, and
2. $B \geq \frac{1}{a+1}$.

Hence pick

Picking B

The two constraints on B are

1. $B \geq \frac{1}{100}$, and
2. $B \geq \frac{1}{a+1}$.

Hence pick

$$
B=\max \left\{\frac{1}{100}, \frac{1}{a+1}\right\}
$$

Coin Problem

Coin Problem

Daleks have a 10 -cent coin, and a 13 -cent coin.

Coin Problem

Daleks have a 10 -cent coin, and a 13 -cent coin.
Problem Find C such that

Coin Problem

Daleks have a 10 -cent coin, and a 13-cent coin.
Problem Find C such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathbb{N}$, and

Coin Problem

Daleks have a 10 -cent coin, and a 13-cent coin.
Problem Find C such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathbb{N}$, and
- $(\forall n \geq C)(\exists x, y \in \mathbb{N})[n=10 x+13 y]$.

Coin Problem

Daleks have a 10 -cent coin, and a 13-cent coin.
Problem Find C such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathbb{N}$, and
- $(\forall n \geq C)(\exists x, y \in \mathbb{N})[n=10 x+13 y]$.
- Prove the above once you found it.

Coin Problem

Daleks have a 10 -cent coin, and a 13 -cent coin.
Problem Find C such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathbb{N}$, and
- $(\forall n \geq C)(\exists x, y \in \mathbb{N})[n=10 x+13 y]$.
- Prove the above once you found it.

We asked you to do it by computer

Coin Problem

Daleks have a 10 -cent coin, and a 13 -cent coin.
Problem Find C such that

- $C-1$ cannot be written as $10 x+13 y$ where $x, y \in \mathbb{N}$, and
- $(\forall n \geq C)(\exists x, y \in \mathbb{N})[n=10 x+13 y]$.
- Prove the above once you found it.

We asked you to do it by computer
We will do it today by constructive induction.

Coin Problem Solution. Plan and Base Case

Coin Problem Solution. Plan and Base Case

Plan

Coin Problem Solution. Plan and Base Case

Plan

1. If there is a 10 -coin then we will swap it out and put in a 13 .

So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case $P(C), P(C+1), P(C+2)$.

Coin Problem Solution. Plan and Base Case

Plan

1. If there is a 10 -coin then we will swap it out and put in a 13 . So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case $P(C), P(C+1), P(C+2)$.
2. If there are no 10 coins then we plan to swap out nine 13 -coins (117) and put in twelve 10 -coins (120) Hence we need for a base case $P(C), P(C+1), P(C+2)$.

Coin Problem Solution. Plan and Base Case

Plan

1. If there is a 10 -coin then we will swap it out and put in a 13 . So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case $P(C), P(C+1), P(C+2)$.
2. If there are no 10 coins then we plan to swap out nine 13 -coins (117) and put in twelve 10 -coins (120) Hence we need for a base case $P(C), P(C+1), P(C+2)$.

IB $C, C+1, C+2$ are all of the form $10 x+13 y$.

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$.

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$.
Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

Case 2 If $y^{\prime} \geq 9$ then we swap out 913 's and put in a 1210 's:

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

Case 2 If $y^{\prime} \geq 9$ then we swap out 913 's and put in a 1210 's:

$$
10\left(x^{\prime}+12\right)+13\left(y^{\prime}-9\right)=10 x^{\prime}+13 y^{\prime}+120-117=n-3+3=n .
$$

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

Case 2 If $y^{\prime} \geq 9$ then we swap out 913 's and put in a 1210 's:

$$
10\left(x^{\prime}+12\right)+13\left(y^{\prime}-9\right)=10 x^{\prime}+13 y^{\prime}+120-117=n-3+3=n .
$$

Case $3 x^{\prime} \leq 0$ and $y^{\prime} \leq 8$. Then
$n-3=10 x^{\prime}+13 y^{\prime} \leq 13 \times 8=104$.

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

Case 2 If $y^{\prime} \geq 9$ then we swap out 913 's and put in a 1210 's:

$$
10\left(x^{\prime}+12\right)+13\left(y^{\prime}-9\right)=10 x^{\prime}+13 y^{\prime}+120-117=n-3+3=n .
$$

Case $3 x^{\prime} \leq 0$ and $y^{\prime} \leq 8$. Then
$n-3=10 x^{\prime}+13 y^{\prime} \leq 13 \times 8=104$.
$n \leq 107$.

IH and IS

IH For all $C \leq n^{\prime}<n$ there exists x^{\prime}, y^{\prime} such that $n^{\prime}=10 x^{\prime}+13 y^{\prime}$. Note Since the IB was $C, C+1, C+2$ we have: the theorem holds for $n-3$. So $\left(\exists x^{\prime}, y\right)\left[n-3=10 x^{\prime}+13 y^{\prime}\right]$.
IS
Case 1 If $x^{\prime} \geq 1$ then we swap out a 10 and put in a 13 .

$$
10\left(x^{\prime}-1\right)+13\left(y^{\prime}+1\right)=10 x^{\prime}+13 y^{\prime}+3=n-3+3=n
$$

Case 2 If $y^{\prime} \geq 9$ then we swap out 913 's and put in a 1210 's:

$$
10\left(x^{\prime}+12\right)+13\left(y^{\prime}-9\right)=10 x^{\prime}+13 y^{\prime}+120-117=n-3+3=n .
$$

Case $3 x^{\prime} \leq 0$ and $y^{\prime} \leq 8$. Then
$n-3=10 x^{\prime}+13 y^{\prime} \leq 13 \times 8=104$.
$n \leq 107$.
The proof that $P(n-3) \rightarrow P(n)$ only works when $n \geq 108$.

Our Guess and Our Plan to Find C

Our Guess and Our Plan to Find C

We guess that the following is true:

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

What might happen? Cases.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

What might happen? Cases.

1. 107 is not of the form but $108,109,110$ are. Then $C=108$.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

What might happen? Cases.

1. 107 is not of the form but $108,109,110$ are. Then $C=108$.
2. At least one of $108,109,110$ are not of the form. Find $C \geq 108$ such that $C-1$ is not of the form but $C, C+1, C+2$ are of the form. Thats your C.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

What might happen? Cases.

1. 107 is not of the form but $108,109,110$ are. Then $C=108$.
2. At least one of $108,109,110$ are not of the form. Find $C \geq 108$ such that $C-1$ is not of the form but $C, C+1, C+2$ are of the form. Thats your C.
3. $107,108,109,110$ are of the form. Hence all $n \geq 107$ are of the form.

Our Guess and Our Plan to Find C

We guess that the following is true:

1. 107 is not of the form $10 x+13 y$.
2. $108,109,110$ are of the form $10 x+13 y$.

What might happen? Cases.

1. 107 is not of the form but $108,109,110$ are. Then $C=108$.
2. At least one of $108,109,110$ are not of the form. Find $C \geq 108$ such that $C-1$ is not of the form but
$C, C+1, C+2$ are of the form. Thats your C.
3. $107,108,109,110$ are of the form. Hence all $n \geq 107$ are of the form.
Look at $106,105, \ldots$ until you find a number NOT of that form. That number is your $C-1$ so one more is your C.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get $7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.
$y \equiv 9: 3 \times 9 \equiv 7$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get
$7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.
$y \equiv 9: 3 \times 9 \equiv 7$.
Hence $y \equiv 9(\bmod 10)$. Hence $y \geq 9$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get
$7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.
$y \equiv 9: 3 \times 9 \equiv 7$.
Hence $y \equiv 9(\bmod 10)$. Hence $y \geq 9$.
But $13 \times 9=117>107$.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get
$7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.
$y \equiv 9: 3 \times 9 \equiv 7$.
Hence $y \equiv 9(\bmod 10)$. Hence $y \geq 9$.
But $13 \times 9=117>107$.
Hence no $y \equiv 9(\bmod 10)$ can work.

107

Assume, BWOC, that there exists $x, y \geq 0$ such that

$$
107=10 x+13 y
$$

Take both sides mod 10 to get
$7 \equiv 3 y \bmod 10$.
If $y \equiv 0,2,4,6,8$ then $3 y$ is even so not $\equiv 7(\bmod 10)$.
$y \equiv 1: 3 \times 1 \equiv 3 \not \equiv 7$.
$y \equiv 3: 3 \times 3 \equiv 9 \not \equiv 7$.
$y \equiv 5: 3 \times 5 \equiv 6 \not \equiv 7$.
$y \equiv 7: 3 \times 7 \equiv 1 \not \equiv 7$.
$y \equiv 9: 3 \times 9 \equiv 7$.
Hence $y \equiv 9(\bmod 10)$. Hence $y \geq 9$.
But $13 \times 9=117>107$.
Hence no $y \equiv 9(\bmod 10)$ can work.
Hence no y can work.

$108,109,110$

Need that 108, 109, 110 ARE of the form $10 x+13 y$.

$108,109,110$

Need that 108, 109, 110 ARE of the form $10 x+13 y$.

1. $108=3 \times 10+6 \times 13$.

$108,109,110$

Need that 108, 109, 110 ARE of the form $10 x+13 y$.

1. $108=3 \times 10+6 \times 13$.
2. $109=7 \times 10+3 \times 13$.

$108,109,110$

Need that 108, 109, 110 ARE of the form $10 x+13 y$.

1. $108=3 \times 10+6 \times 13$.
2. $109=7 \times 10+3 \times 13$.
3. $110=11 \times 10+0 \times 13$.

$108,109,110$

Need that 108, 109, 110 ARE of the form $10 x+13 y$.

1. $108=3 \times 10+6 \times 13$.
2. $109=7 \times 10+3 \times 13$.
3. $110=11 \times 10+0 \times 13$.

So we are done! $C=108$.

Sum of Squares

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.
2. $x^{4} \equiv(16-x)^{4}$ cuts down on cases.

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.
2. $x^{4} \equiv(16-x)^{4}$ cuts down on cases.
3. $1^{4} \equiv 1$ so $15^{4} \equiv 1$.

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.
2. $x^{4} \equiv(16-x)^{4}$ cuts down on cases.
3. $1^{4} \equiv 1$ so $15^{4} \equiv 1$.
4. $3^{4}=81 \equiv 1$ so $13^{4} \equiv 1$.

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.
2. $x^{4} \equiv(16-x)^{4}$ cuts down on cases.
3. $1^{4} \equiv 1$ so $15^{4} \equiv 1$.
4. $3^{4}=81 \equiv 1$ so $13^{4} \equiv 1$.
5. $5^{4}=5^{2} \times 5^{2} \equiv 9 \times 9 \equiv 81 \equiv 1$. So $11^{4} \equiv 1$.

Fourth Powers Mod 16

Find the following set

$$
X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\}
$$

1. $x=2 k: x^{4}=16 k^{4} \equiv 0$. Takes care of $0,2, \ldots, 14$.
2. $x^{4} \equiv(16-x)^{4}$ cuts down on cases.
3. $1^{4} \equiv 1$ so $15^{4} \equiv 1$.
4. $3^{4}=81 \equiv 1$ so $13^{4} \equiv 1$.
5. $5^{4}=5^{2} \times 5^{2} \equiv 9 \times 9 \equiv 81 \equiv 1$. So $11^{4} \equiv 1$.
6. $7^{4}=7^{2} \times 7^{2} \equiv 49 \times 49 \equiv 1 \times 1$. So $9^{4} \equiv 1$.

Fourth Powers Mod 16

Find the following set

$$
\begin{aligned}
& \qquad X=\left\{x^{4} \quad(\bmod 16): x \in\{0, \ldots, 15\}\right\} \\
& \text { 1. } x=2 k: x^{4}=16 k^{4} \equiv 0 . \text { Takes care of } 0,2, \ldots, 14 . \\
& \text { 2. } x^{4} \equiv(16-x)^{4} \text { cuts down on cases. } \\
& \text { 3. } 1^{4} \equiv 1 \text { so } 15^{4} \equiv 1 . \\
& \text { 4. } 3^{4}=81 \equiv 1 \text { so } 13^{4} \equiv 1 . \\
& \text { 5. } 5^{4}=5^{2} \times 5^{2} \equiv 9 \times 9 \equiv 81 \equiv 1 . \text { So } 11^{4} \equiv 1 . \\
& \text { 6. } 7^{4}=7^{2} \times 7^{2} \equiv 49 \times 49 \equiv 1 \times 1 . \text { So } 9^{4} \equiv 1 . \\
& X=\{0,1\} .
\end{aligned}
$$

$x \equiv 15 \rightarrow x$ is NOT the sum of 14 4th powers

Assume BWOC $x=\sum_{i=1}^{14} x_{i}^{4}$.

$x \equiv 15 \rightarrow x$ is NOT the sum of 144 th powers

Assume BWOC $x=\sum_{i=1}^{14} x_{i}^{4}$.
Take this equation $\bmod 16$.
$15 \equiv \sum_{i=1}^{14} x_{i}^{4}$

$x \equiv 15 \rightarrow x$ is NOT the sum of 144 th powers

Assume BWOC $x=\sum_{i=1}^{14} x_{i}^{4}$.
Take this equation $\bmod 16$.
$15 \equiv \sum_{i=1}^{14} x_{i}^{4}$
Every $x_{i}^{4}(\bmod 16)$ is in $\{0,1\}$.

$x \equiv 15 \rightarrow x$ is NOT the sum of 144 th powers

Assume BWOC $x=\sum_{i=1}^{14} x_{i}^{4}$.
Take this equation $\bmod 16$.
$15 \equiv \sum_{i=1}^{14} x_{i}^{4}$
Every $x_{i}^{4}(\bmod 16)$ is in $\{0,1\}$.
Hence $\sum_{i=1}^{14} x_{i}^{4} \in\{0, \ldots, 14\}$.

$x \equiv 15 \rightarrow x$ is NOT the sum of 144 th powers

Assume BWOC $x=\sum_{i=1}^{14} x_{i}^{4}$.
Take this equation $\bmod 16$.
$15 \equiv \sum_{i=1}^{14} x_{i}^{4}$
Every $x_{i}^{4}(\bmod 16)$ is in $\{0,1\}$.
Hence $\sum_{i=1}^{14} x_{i}^{4} \in\{0, \ldots, 14\}$.
Contradiction.

$x \equiv 1(\bmod 2) \rightarrow x^{4} \equiv 1(\bmod 16)$

We give two proofs.

$x \equiv 1(\bmod 2) \rightarrow x^{4} \equiv 1(\bmod 16)$

We give two proofs.
Pf One $x=2 k+1$

$$
x^{2}=(2 k+1)^{4}=(2 k)^{4}+4(2 k)^{3}+6(2 k)^{2}+4(2 k)+1^{4}
$$

$x \equiv 1(\bmod 2) \rightarrow x^{4} \equiv 1(\bmod 16)$

We give two proofs.
Pf One $x=2 k+1$

$$
x^{2}=(2 k+1)^{4}=(2 k)^{4}+4(2 k)^{3}+6(2 k)^{2}+4(2 k)+1^{4}
$$

$=16 k^{4}+32 k^{3}+24 k^{2}+8 k+1 \equiv 24 k^{2}+8 k+1 \equiv 16 k^{2}+8 k^{2}+8 k+1 \equiv 8 k(k-$

$x \equiv 1(\bmod 2) \rightarrow x^{4} \equiv 1(\bmod 16)$

We give two proofs.
Pf One $x=2 k+1$

$$
\begin{gathered}
x^{2}=(2 k+1)^{4}=(2 k)^{4}+4(2 k)^{3}+6(2 k)^{2}+4(2 k)+1^{4} \\
=16 k^{4}+32 k^{3}+24 k^{2}+8 k+1 \equiv 24 k^{2}+8 k+1 \equiv 16 k^{2}+8 k^{2}+8 k+1 \equiv 8 k(k-
\end{gathered}
$$

$($ We use that $k(k+1) \equiv 0(\bmod 2)$.

$x \equiv 1(\bmod 2) \rightarrow x^{4} \equiv 1(\bmod 16)$

We give two proofs.
Pf One $x=2 k+1$

$$
\begin{gathered}
x^{2}=(2 k+1)^{4}=(2 k)^{4}+4(2 k)^{3}+6(2 k)^{2}+4(2 k)+1^{4} \\
=16 k^{4}+32 k^{3}+24 k^{2}+8 k+1 \equiv 24 k^{2}+8 k+1 \equiv 16 k^{2}+8 k^{2}+8 k+1 \equiv 8 k(k-
\end{gathered}
$$

(We use that $k(k+1) \equiv 0(\bmod 2)$.
Pf Two $x \equiv 1(\bmod 2) \rightarrow x \equiv 1,3,5,7,9,11,13,15(\bmod 16)$.
We did this earlier.

$x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16) \rightarrow(\forall i)\left[x_{i} \equiv 0(\bmod 2)\right.$

Assume that m of the x_{i} 's are odd and $14-m$ are even.

$x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16) \rightarrow(\forall i)\left[x_{i} \equiv 0(\bmod 2)\right.$

Assume that m of the x_{i} 's are odd and $14-m$ are even.

$$
x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0 \quad(\bmod 16)
$$

$x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16) \rightarrow(\forall i)\left[x_{i} \equiv 0(\bmod 2)\right.$

Assume that m of the x_{i} 's are odd and $14-m$ are even.

$$
x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0 \quad(\bmod 16)
$$

But also

$$
x_{1}^{4}+\cdots+x_{14}^{4} \equiv m \quad(\bmod 16)
$$

$x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16) \rightarrow(\forall i)\left[x_{i} \equiv 0(\bmod 2)\right.$

Assume that m of the x_{i} 's are odd and $14-m$ are even.

$$
x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0 \quad(\bmod 16)
$$

But also

$$
x_{1}^{4}+\cdots+x_{14}^{4} \equiv m \quad(\bmod 16)
$$

So $m=0$.

Main Thm and IB

Thm Let $n \geq 0$. Let $k \in \mathbb{N}$. Then $16^{n}(16 k+15)$ cannot be written as the sum of 144 th powers.

Main Thm and IB

Thm Let $n \geq 0$. Let $k \in \mathbb{N}$. Then $16^{n}(16 k+15)$ cannot be written as the sum of 144 th powers.
Prove is by induction on n.

Main Thm and IB

Thm Let $n \geq 0$. Let $k \in \mathbb{N}$. Then $16^{n}(16 k+15)$ cannot be written as the sum of 144 th powers.
Prove is by induction on n.
IB $n=0 .(\forall k)[16 k+15$ is not the sum of 144 th powers $]$.
This was proven in an earlier part.

IH and IS

IH For all $k^{\prime}, 16^{n-1}\left(16 k^{\prime}+15\right)$ is not the sum of 144 th powers.
(All we need is $16^{n-1}(16 k+15)$ is not the sum of 144 th powers.)

IH and IS

IH For all $k^{\prime}, 16^{n-1}\left(16 k^{\prime}+15\right)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16 k+15)$ is not the sum of 144 th powers.)
IS Let $n \geq 1$. We want to show that, for all $k, 16^{n}(16 k+15)$ is not the sum of 144 th powers.

IH and IS

IH For all $k^{\prime}, 16^{n-1}\left(16 k^{\prime}+15\right)$ is not the sum of 144 th powers. (All we need is $16^{n-1}(16 k+15)$ is not the sum of 144 th powers.)
IS Let $n \geq 1$. We want to show that, for all $k, 16^{n}(16 k+15)$ is not the sum of 14 4th powers.
Assume, BWOC: $\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.

IH and IS

IH For all $k^{\prime}, 16^{n-1}\left(16 k^{\prime}+15\right)$ is not the sum of 144 th powers. (All we need is $16^{n-1}(16 k+15)$ is not the sum of 144 th powers.)
IS Let $n \geq 1$. We want to show that, for all $k, 16^{n}(16 k+15)$ is not the sum of 14 4th powers.
Assume, BWOC: $\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$. So $x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16)$.

IH and IS

IH For all $k^{\prime}, 16^{n-1}\left(16 k^{\prime}+15\right)$ is not the sum of 144 th powers. (All we need is $16^{n-1}(16 k+15)$ is not the sum of 144 th powers.)
IS Let $n \geq 1$. We want to show that, for all $k, 16^{n}(16 k+15)$ is not the sum of 14 4th powers.
Assume, BWOC: $\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$. So $x_{1}^{4}+\cdots+x_{14}^{4} \equiv 0(\bmod 16)$.
By earlier part $x_{1}, \ldots, x_{14}=2 y_{1}, \ldots, 2 y_{14}$.

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

$$
16^{n}(16 k+15)=\left(2 y_{1}\right)^{4}+\cdots+\left(2 x_{14}\right)^{4}=2^{4} y_{1}^{4}+\cdots+2^{4} y_{14}^{4}=
$$

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

$$
\begin{gathered}
16^{n}(16 k+15)=\left(2 y_{1}\right)^{4}+\cdots+\left(2 x_{14}\right)^{4}=2^{4} y_{1}^{4}+\cdots+2^{4} y_{14}^{4}= \\
=16\left(y_{1}^{4}+\cdots+y_{14}^{4}\right)
\end{gathered}
$$

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

$$
\begin{gathered}
16^{n}(16 k+15)=\left(2 y_{1}\right)^{4}+\cdots+\left(2 x_{14}\right)^{4}=2^{4} y_{1}^{4}+\cdots+2^{4} y_{14}^{4}= \\
=16\left(y_{1}^{4}+\cdots+y_{14}^{4}\right)
\end{gathered}
$$

Divide by 16

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

$$
\begin{gathered}
16^{n}(16 k+15)=\left(2 y_{1}\right)^{4}+\cdots+\left(2 x_{14}\right)^{4}=2^{4} y_{1}^{4}+\cdots+2^{4} y_{14}^{4}= \\
=16\left(y_{1}^{4}+\cdots+y_{14}^{4}\right)
\end{gathered}
$$

Divide by 16

$$
16^{n-1}(16 k+15)=y_{1}^{4}+\cdots+y_{14}^{4}
$$

IH and IS (cont)

$\left(\exists x_{1}, \ldots, x_{14}\right)\left[16^{n}(16 k+15)=x_{1}^{4}+\cdots+x_{14}^{4}\right]$.
For all $i, x_{i}=2 y_{i}$. So

$$
\begin{gathered}
16^{n}(16 k+15)=\left(2 y_{1}\right)^{4}+\cdots+\left(2 x_{14}\right)^{4}=2^{4} y_{1}^{4}+\cdots+2^{4} y_{14}^{4}= \\
=16\left(y_{1}^{4}+\cdots+y_{14}^{4}\right)
\end{gathered}
$$

Divide by 16

$$
16^{n-1}(16 k+15)=y_{1}^{4}+\cdots+y_{14}^{4}
$$

This is a contradiction.

