Untimed Midterm Two Solutions

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

An Interesting Sum

・ロト・日本・ヨト・ヨト・日・ つへぐ

An Interesting Sum

May use $(n-1)^{11} \sim n^{11} - 11n^{10}$. BY CONSTRUCTIVE INDUCTION find A such that

$$(\forall n \ge 100) \left[\sum_{i=100}^{n} i^{10} \le An^{11} \right].$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

IB n = 100. $\sum_{i=100}^{100} i^{10} = 100^{10}$.

・ロト・日本・ヨト・ヨト・日・ つへぐ

IB n = 100. $\sum_{i=100}^{100} i^{10} = 100^{10}$. We need

・ロト・日本・ヨト・ヨト・日・ つへぐ

IB n = 100. $\sum_{i=100}^{100} i^{10} = 100^{10}$. We need

 $100^{10} \le A \times 100^{11}.$

IB
$$n = 100$$
. $\sum_{i=100}^{100} i^{10} = 100^{10}$. We need

 $100^{10} \le A \times 100^{11}.$

$$A \geq rac{100^{10}}{100^{11}} = rac{1}{100}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IB
$$n = 100$$
. $\sum_{i=100}^{100} i^{10} = 100^{10}$. We need

 $100^{10} \le A \times 100^{11}.$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

$$A\geq \frac{100^{10}}{100^{11}}=\frac{1}{100}.$$
 So the constraint is $A\geq \frac{1}{100}.$

IH and IS IH $\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$.

IH
$$\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$$
.
IS

$$\sum_{i=100}^{n} i^{10} = \left(\sum_{i=100}^{n-1} i^{10}\right) + n^{10} \le A(n-1)^{11} + n^{10}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

We need

IH
$$\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$$
.
IS

$$\sum_{i=100}^{n} i^{10} = \left(\sum_{i=100}^{n-1} i^{10}\right) + n^{10} \le A(n-1)^{11} + n^{10}.$$

We need

$$A(n-1)^{11} + n^{10} \le An^{11}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IH
$$\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$$
.
IS

$$\sum_{i=100}^{n} i^{10} = \left(\sum_{i=100}^{n-1} i^{10}\right) + n^{10} \le A(n-1)^{11} + n^{10}.$$

We need

$$A(n-1)^{11} + n^{10} \le An^{11}$$

$$n^{10} \leq An^{11} - A(n-1)^{11} \sim An^{11} - A(n^{11} - 11n^{10})$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IH
$$\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$$
.
IS

$$\sum_{i=100}^{n} i^{10} = \left(\sum_{i=100}^{n-1} i^{10}\right) + n^{10} \le A(n-1)^{11} + n^{10}.$$

We need

$$A(n-1)^{11} + n^{10} \le An^{11}$$

 $n^{10} \le An^{11} - A(n-1)^{11} \sim An^{11} - A(n^{11} - 11n^{10})$

 $n^{10} \le An^{11} - An^{11} + 11An^{10} = 11An^{10}$

・ロト・日本・ヨト・ヨト・日・ つへぐ

IH
$$\sum_{i=100}^{n-1} i^{10} \le A(n-1)^{11}$$
.
IS

$$\sum_{i=100}^{n} i^{10} = \left(\sum_{i=100}^{n-1} i^{10}\right) + n^{10} \le A(n-1)^{11} + n^{10}.$$

We need

$$\begin{aligned} A(n-1)^{11} + n^{10} &\leq An^{11} \\ n^{10} &\leq An^{11} - A(n-1)^{11} \sim An^{11} - A(n^{11} - 11n^{10}) \\ n^{10} &\leq An^{11} - An^{11} + 11An^{10} = 11An^{10} \\ A &\geq \frac{1}{11}. \end{aligned}$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Picking A

The two constraints on A are

1.
$$A \ge \frac{1}{100}$$
, and
2. $A \ge \frac{1}{11}$.

Hence we choose $A = \frac{1}{11}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Generalization of an Interesting Sum

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Generalization of Interesting Sum

May use $(n-1)^a \sim n^a - an^{a-1}$. BY CONSTRUCTIVE INDUCTION find a constant B such that

$$(\forall n \ge 100) \left[\sum_{i=100}^{n} i^{a} \le Bn^{a+1} \right]$$

(ロト (個) (E) (E) (E) (E) のへの

IB n = 100. $\sum_{i=100}^{100} i^a = (100)^a$. We need that

・ロト・4回ト・4回ト・4回ト・回りの()

IB n = 100. $\sum_{i=100}^{100} i^a = (100)^a$. We need that $100^a \le B \times 100^{a+1}$.

▲□▶▲□▶▲□▶▲□▶▲□▶ □ ● ●

IB
$$n = 100$$
. $\sum_{i=100}^{100} i^a = (100)^a$. We need that $100^a \le B \times 100^{a+1}$.

So the constraint is

$$B \geq \frac{100^a}{100^{a+1}} = \frac{1}{100}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

IH and IS IH: $\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$.

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で</p>

IH and IS IH: $\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$. IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

IH and IS
IH:
$$\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$$
.
IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

We need

IH and IS
IH:
$$\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$$
.
IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

$$B(n-1)^{a+1} + n^a \leq Bn^{a+1}$$

IH and IS
IH:
$$\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$$
.
IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

$$B(n-1)^{a+1} + n^a \leq Bn^{a+1}$$

$$n^{a} \leq Bn^{a+1} - B(n-1)^{a+1} \sim Bn^{a+1} - B(n^{a+1} - (a+1)n^{a}).$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

IH and IS
IH:
$$\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$$
.
IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

$$B(n-1)^{a+1} + n^a \leq Bn^{a+1}$$

$$n^a \leq Bn^{a+1} - B(n-1)^{a+1} \sim Bn^{a+1} - B(n^{a+1} - (a+1)n^a).$$

$$n^a \leq Bn^{a+1} - Bn^{a+1} + (a+1)Bn^a) = (a+1)Bn^a$$

IH and IS
IH:
$$\sum_{i=100}^{n-1} i^a \le B(n-1)^{a+1}$$
.
IS:

$$\sum_{i=100}^{n} i^{a} = \sum_{i=100}^{n-1} i^{a} + n^{a} \le B(n-1)^{a+1} + n^{a}.$$

$$B(n-1)^{a+1} + n^a \leq Bn^{a+1}$$

$$n^a \leq Bn^{a+1} - B(n-1)^{a+1} \sim Bn^{a+1} - B(n^{a+1} - (a+1)n^a).$$

$$n^a \leq Bn^{a+1} - Bn^{a+1} + (a+1)Bn^a) = (a+1)Bn^a$$

$$B \geq \frac{1}{a+1}.$$

The two constraints on \boldsymbol{B} are

The two constraints on B are 1. $B \geq \frac{1}{100}$, and

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The two constraints on *B* are 1. $B > \frac{1}{100}$, and

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

1.
$$B \ge \frac{1}{100}$$
, ar
2. $B \ge \frac{1}{a+1}$.

The two constraints on *B* are 1. $B \ge \frac{1}{100}$, and 2. $B \ge \frac{1}{a+1}$. Hence pick

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The two constraints on *B* are 1. $B \ge \frac{1}{100}$, and 2. $B \ge \frac{1}{a+1}$. Hence pick

$$B = \max\left\{\frac{1}{100}, \frac{1}{a+1}\right\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Coin Problem

Daleks have a 10-cent coin, and a 13-cent coin.

Coin Problem

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

▶ C-1 cannot be written as 10x + 13y where $x, y \in \mathbb{N}$, and

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Coin Problem

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

▶ C-1 cannot be written as 10x + 13y where $x, y \in \mathbb{N}$, and

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$\blacktriangleright \ (\forall n \geq C)(\exists x, y \in \mathbb{N})[n = 10x + 13y].$$

Coin Problem

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

▶ C-1 cannot be written as 10x + 13y where $x, y \in \mathbb{N}$, and

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

•
$$(\forall n \geq C)(\exists x, y \in \mathbb{N})[n = 10x + 13y].$$

Prove the above once you found it.

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

▶ C-1 cannot be written as 10x + 13y where $x, y \in \mathbb{N}$, and

$$(\forall n \geq C)(\exists x, y \in \mathbb{N})[n = 10x + 13y].$$

Prove the above once you found it.

We asked you to do it by computer

Daleks have a 10-cent coin, and a 13-cent coin. **Problem** Find *C* such that

▶ C-1 cannot be written as 10x + 13y where $x, y \in \mathbb{N}$, and

$$\blacktriangleright \ (\forall n \geq C)(\exists x, y \in \mathbb{N})[n = 10x + 13y].$$

Prove the above once you found it.

We asked you to do it by computer We will do it today by constructive induction.

Plan

Plan

1. If there is a 10-coin then we will swap it out and put in a 13. So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case P(C), P(C+1), P(C+2).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Plan

- 1. If there is a 10-coin then we will swap it out and put in a 13. So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case P(C), P(C+1), P(C+2).
- 2. If there are no 10 coins then we plan to swap out nine 13-coins (117) and put in twelve 10-coins (120) Hence we need for a base case P(C), P(C + 1), P(C + 2).

ション ふゆ アメリア メリア しょうくしゃ

Plan

- 1. If there is a 10-coin then we will swap it out and put in a 13. So we will go $P(n) \rightarrow P(n+3)$. Hence we need for a base case P(C), P(C+1), P(C+2).
- 2. If there are no 10 coins then we plan to swap out nine 13-coins (117) and put in twelve 10-coins (120) Hence we need for a base case P(C), P(C + 1), P(C + 2).

IB C, C + 1, C + 2 are all of the form 10x + 13y.

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'.

・ロト・日本・ヨト・ヨト・ヨー つへぐ

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$.

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

Case 2 If $y' \ge 9$ then we swap out 9 13's and put in a 12 10's:

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

Case 2 If $y' \ge 9$ then we swap out 9 13's and put in a 12 10's:

10(x'+12)+13(y'-9) = 10x'+13y'+120-117 = n-3+3 = n.

A D > A P > A E > A E > A D > A Q A

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

Case 2 If $y' \ge 9$ then we swap out 9 13's and put in a 12 10's:

$$10(x'+12)+13(y'-9) = 10x'+13y'+120-117 = n-3+3 = n.$$

Case 3
$$x' \le 0$$
 and $y' \le 8$. Then
 $n-3 = 10x' + 13y' \le 13 \times 8 = 104$.

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS**

Case 1 If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

Case 2 If $y' \ge 9$ then we swap out 9 13's and put in a 12 10's:

$$10(x'+12)+13(y'-9) = 10x'+13y'+120-117 = n-3+3 = n.$$

Case 3
$$x' \le 0$$
 and $y' \le 8$. Then
 $n-3 = 10x' + 13y' \le 13 \times 8 = 104$.
 $n \le 107$.

IH For all $C \le n' < n$ there exists x', y' such that n' = 10x' + 13y'. **Note** Since the IB was C, C + 1, C + 2 we have: the theorem holds for n - 3. So $(\exists x', y)[n - 3 = 10x' + 13y']$. **IS Case 1** If $x' \ge 1$ then we swap out a 10 and put in a 13.

$$10(x'-1) + 13(y'+1) = 10x' + 13y' + 3 = n - 3 + 3 = n$$

Case 2 If $y' \ge 9$ then we swap out 9 13's and put in a 12 10's:

$$10(x'+12)+13(y'-9) = 10x'+13y'+120-117 = n-3+3 = n.$$

Case 3
$$x' \le 0$$
 and $y' \le 8$. Then
 $n-3 = 10x' + 13y' \le 13 \times 8 = 104$.
 $n \le 107$.
The proof that $P(n-3) \rightarrow P(n)$ only works when $n \ge 108$.

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||の��

We **guess** that the following is true:

We **guess** that the following is true:

1. 107 is not of the form 10x + 13y.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We **guess** that the following is true:

- 1. 107 is not of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We **guess** that the following is true:

- 1. 107 **is not** of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

What might happen? Cases.

We **guess** that the following is true:

- 1. 107 **is not** of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

What might happen? Cases.

1. 107 is not of the form but 108, 109, 110 are. Then C = 108.

We guess that the following is true:

- 1. 107 **is not** of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

What might happen? Cases.

1. 107 is not of the form but 108, 109, 110 are. Then C = 108.

ション ふゆ アメリア メリア しょうくしゃ

2. At least one of 108, 109, 110 are not of the form. Find $C \ge 108$ such that C - 1 is not of the form but C, C + 1, C + 2 are of the form. Thats your C.

We **guess** that the following is true:

- 1. 107 **is not** of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

What might happen? Cases.

- 1. 107 is not of the form but 108, 109, 110 are. Then C = 108.
- 2. At least one of 108, 109, 110 are not of the form. Find $C \ge 108$ such that C 1 is not of the form but C, C + 1, C + 2 are of the form. Thats your C.
- 3. 107,108,109,110 are of the form. Hence all $n \ge 107$ are of the form.

ション ふゆ アメリア メリア しょうくしゃ

We guess that the following is true:

- 1. 107 is not of the form 10x + 13y.
- 2. 108, 109, 110 are of the form 10x + 13y.

What might happen? Cases.

- 1. 107 is not of the form but 108, 109, 110 are. Then C = 108.
- 2. At least one of 108, 109, 110 are not of the form. Find $C \ge 108$ such that C 1 is not of the form but C, C + 1, C + 2 are of the form. Thats your C.
- 3. 107,108,109,110 are of the form. Hence all $n \ge 107$ are of the form.

Look at 106, 105, ... until you find a number NOT of that form. That number is your C - 1 so one more is your C.

Assume, BWOC, that there exists $x, y \ge 0$ such that

107 = 10x + 13y

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Take both sides mod 10 to get $7 \equiv 3y \mod 10$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1$: $3 \times 1 \equiv 3 \not\equiv 7$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \neq 7$. $y \equiv 3: 3 \times 3 \equiv 9 \neq 7$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \neq 7$. $y \equiv 3: 3 \times 3 \equiv 9 \neq 7$. $y \equiv 5: 3 \times 5 \equiv 6 \neq 7$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \not\equiv 7$. $y \equiv 3: 3 \times 3 \equiv 9 \not\equiv 7$. $y \equiv 5: 3 \times 5 \equiv 6 \not\equiv 7$. $y \equiv 7: 3 \times 7 \equiv 1 \not\equiv 7$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \neq 7$. $y \equiv 3: 3 \times 3 \equiv 9 \neq 7$. $y \equiv 5: 3 \times 5 \equiv 6 \neq 7$. $y \equiv 7: 3 \times 7 \equiv 1 \neq 7$. $y \equiv 9: 3 \times 9 \equiv 7$.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \neq 7$. $y \equiv 3: 3 \times 3 \equiv 9 \neq 7$. $y \equiv 5: 3 \times 5 \equiv 6 \neq 7$. $y \equiv 7: 3 \times 7 \equiv 1 \neq 7$. $y \equiv 9: 3 \times 9 \equiv 7$. Hence $y \equiv 9 \pmod{10}$. Hence y > 9.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1: 3 \times 1 \equiv 3 \not\equiv 7$. $y \equiv 3: 3 \times 3 \equiv 9 \not\equiv 7$. $y \equiv 5: 3 \times 5 \equiv 6 \not\equiv 7$. $y \equiv 7: 3 \times 7 \equiv 1 \not\equiv 7$. $y \equiv 9: 3 \times 9 \equiv 7$. Hence $y \equiv 9 \pmod{10}$. Hence $y \ge 9$. But $13 \times 9 = 117 > 107$.

・ロト・西ト・ヨト・ヨー シック

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1$: $3 \times 1 \equiv 3 \not\equiv 7$. $v \equiv 3$: $3 \times 3 \equiv 9 \not\equiv 7$. $v \equiv 5$: $3 \times 5 \equiv 6 \not\equiv 7$. $v \equiv 7$: $3 \times 7 \equiv 1 \not\equiv 7$. $v \equiv 9$: $3 \times 9 \equiv 7$. **Hence** $y \equiv 9 \pmod{10}$. Hence $y \geq 9$. But $13 \times 9 = 117 > 107$. Hence no $y \equiv 9 \pmod{10}$ can work.

Assume, BWOC, that there exists $x, y \ge 0$ such that

$$107 = 10x + 13y$$

Take both sides mod 10 to get $7 \equiv 3y \mod 10$. If $y \equiv 0, 2, 4, 6, 8$ then 3y is even so not $\equiv 7 \pmod{10}$. $y \equiv 1$: $3 \times 1 \equiv 3 \not\equiv 7$. $v \equiv 3$: $3 \times 3 \equiv 9 \not\equiv 7$. $v \equiv 5$: $3 \times 5 \equiv 6 \not\equiv 7$. $v \equiv 7$: $3 \times 7 \equiv 1 \not\equiv 7$. $v \equiv 9$: $3 \times 9 \equiv 7$. **Hence** $y \equiv 9 \pmod{10}$. Hence $y \geq 9$. But $13 \times 9 = 117 > 107$. Hence no $y \equiv 9 \pmod{10}$ can work. Hence no y can work.

Need that 108, 109, 110 ARE of the form 10x + 13y.

Need that 108, 109, 110 ARE of the form 10x + 13y. 1. $108 = 3 \times 10 + 6 \times 13$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Need that 108, 109, 110 ARE of the form 10x + 13y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

1. $108 = 3 \times 10 + 6 \times 13$.

2. $109 = 7 \times 10 + 3 \times 13$.

Need that 108, 109, 110 ARE of the form 10x + 13y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 1. $108 = 3 \times 10 + 6 \times 13$.
- 2. $109 = 7 \times 10 + 3 \times 13$.
- **3**. $110 = 11 \times 10 + 0 \times 13$.

Need that 108, 109, 110 ARE of the form 10x + 13y.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

- 1. $108 = 3 \times 10 + 6 \times 13$.
- 2. $109 = 7 \times 10 + 3 \times 13$.
- **3**. $110 = 11 \times 10 + 0 \times 13$.

So we are done! C = 108.

Sum of Squares

・ロト・日本・ヨト・ヨト・日・ つへぐ

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

1. x = 2k: $x^4 = 16k^4 \equiv 0$. Takes care of 0, 2, ..., 14.

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

1. x = 2k: $x^4 = 16k^4 \equiv 0$. Takes care of 0, 2, ..., 14. 2. $x^4 \equiv (16 - x)^4$ cuts down on cases.

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

x = 2k: x⁴ = 16k⁴ ≡ 0. Takes care of 0, 2, ..., 14.
 x⁴ ≡ (16 - x)⁴ cuts down on cases.
 1⁴ ≡ 1 so 15⁴ ≡ 1.

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$

1. x = 2k: $x^4 = 16k^4 \equiv 0$. Takes care of 0, 2, ..., 14. 2. $x^4 \equiv (16 - x)^4$ cuts down on cases. 3. $1^4 \equiv 1$ so $15^4 \equiv 1$. 4. $3^4 = 81 \equiv 1$ so $13^4 \equiv 1$.

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$
1. $x = 2k$: $x^4 = 16k^4 \equiv 0$. Takes care of $0, 2, \dots, 14$.
2. $x^4 \equiv (16 - x)^4$ cuts down on cases.
3. $1^4 \equiv 1$ so $15^4 \equiv 1$.
4. $3^4 = 81 \equiv 1$ so $13^4 \equiv 1$.
5. $5^4 = 5^2 \times 5^2 \equiv 9 \times 9 \equiv 81 \equiv 1$. So $11^4 \equiv 1$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$
1. $x = 2k$: $x^4 = 16k^4 \equiv 0$. Takes care of $0, 2, \dots, 14$.
2. $x^4 \equiv (16 - x)^4$ cuts down on cases.
3. $1^4 \equiv 1$ so $15^4 \equiv 1$.
4. $3^4 = 81 \equiv 1$ so $13^4 \equiv 1$.
5. $5^4 = 5^2 \times 5^2 \equiv 9 \times 9 \equiv 81 \equiv 1$. So $11^4 \equiv 1$.
6. $7^4 = 7^2 \times 7^2 \equiv 49 \times 49 \equiv 1 \times 1$. So $9^4 \equiv 1$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Find the following set

$$X = \{x^4 \pmod{16} : x \in \{0, \dots, 15\}\}.$$
1. $x = 2k$: $x^4 = 16k^4 \equiv 0$. Takes care of $0, 2, \dots, 14$.
2. $x^4 \equiv (16 - x)^4$ cuts down on cases.
3. $1^4 \equiv 1$ so $15^4 \equiv 1$.
4. $3^4 = 81 \equiv 1$ so $13^4 \equiv 1$.
5. $5^4 = 5^2 \times 5^2 \equiv 9 \times 9 \equiv 81 \equiv 1$. So $11^4 \equiv 1$.
6. $7^4 = 7^2 \times 7^2 \equiv 49 \times 49 \equiv 1 \times 1$. So $9^4 \equiv 1$.
 $X = \{0, 1\}.$

(ロト (個) (E) (E) (E) (E) のへの

Assume BWOC $x = \sum_{i=1}^{14} x_i^4$.

Assume BWOC $x = \sum_{i=1}^{14} x_i^4$.

Take this equation mod 16. $15 \equiv \sum_{i=1}^{14} x_i^4$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Assume BWOC $x = \sum_{i=1}^{14} x_i^4$.

Take this equation mod 16. $15 \equiv \sum_{i=1}^{14} x_i^4$

Every $x_i^4 \pmod{16}$ is in $\{0, 1\}$.

ション ふゆ アメリア メリア しょうくしゃ

Assume BWOC $x = \sum_{i=1}^{14} x_i^4$.

Take this equation mod 16. $15 \equiv \sum_{i=1}^{14} x_i^4$ Every $x_i^4 \pmod{16}$ is in $\{0,1\}$. Hence $\sum_{i=1}^{14} x_i^4 \in \{0,\dots,14\}$.

ション ふゆ アメリア メリア しょうくしゃ

Assume BWOC $x = \sum_{i=1}^{14} x_i^4$.

Take this equation mod 16. $15 \equiv \sum_{i=1}^{14} x_i^4$ Every $x_i^4 \pmod{16}$ is in $\{0,1\}$. Hence $\sum_{i=1}^{14} x_i^4 \in \{0,\dots,14\}$.

Contradiction.

We give two proofs.

We give two proofs. **Pf One** x = 2k + 1

$$x^{2} = (2k + 1)^{4} = (2k)^{4} + 4(2k)^{3} + 6(2k)^{2} + 4(2k) + 1^{4}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We give two proofs. **Pf One** x = 2k + 1

$$x^{2} = (2k + 1)^{4} = (2k)^{4} + 4(2k)^{3} + 6(2k)^{2} + 4(2k) + 1^{4}$$

 $= 16k^{4} + 32k^{3} + 24k^{2} + 8k + 1 \equiv 24k^{2} + 8k + 1 \equiv 16k^{2} + 8k^{2} + 8k + 1 \equiv 8k(k + 1) = 16k^{2} + 8k^{2} + 8k^{2} + 8k + 1 \equiv 16k^{2} + 8k^{2} + 8k^{2}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

We give two proofs. **Pf One** x = 2k + 1

$$x^{2} = (2k + 1)^{4} = (2k)^{4} + 4(2k)^{3} + 6(2k)^{2} + 4(2k) + 1^{4}$$

 $= 16k^{4} + 32k^{3} + 24k^{2} + 8k + 1 \equiv 24k^{2} + 8k + 1 \equiv 16k^{2} + 8k^{2} + 8k + 1 \equiv 8k(k - 1)$ (We use that $k(k + 1) \equiv 0 \pmod{2}$.)

We give two proofs. **Pf One** x = 2k + 1

$$x^{2} = (2k+1)^{4} = (2k)^{4} + 4(2k)^{3} + 6(2k)^{2} + 4(2k) + 1^{4}$$

 $= 16k^{4} + 32k^{3} + 24k^{2} + 8k + 1 \equiv 24k^{2} + 8k + 1 \equiv 16k^{2} + 8k^{2} + 8k + 1 \equiv 8k(k - 1)$ (We use that $k(k + 1) \equiv 0 \pmod{2}$.)

ション ふゆ アメリア メリア しょうくしゃ

Pf Two $x \equiv 1 \pmod{2} \rightarrow x \equiv 1, 3, 5, 7, 9, 11, 13, 15 \pmod{16}$. We did this earlier.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume that *m* of the x_i 's are odd and 14 - m are even.

Assume that *m* of the x_i 's are odd and 14 - m are even.

$$x_1^4 + \dots + x_{14}^4 \equiv 0 \pmod{16}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume that *m* of the x_i 's are odd and 14 - m are even.

$$x_1^4 + \dots + x_{14}^4 \equiv 0 \pmod{16}$$

But also

$$x_1^4 + \dots + x_{14}^4 \equiv m \pmod{16}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Assume that *m* of the x_i 's are odd and 14 - m are even.

$$x_1^4 + \dots + x_{14}^4 \equiv 0 \pmod{16}$$

But also

$$x_1^4 + \dots + x_{14}^4 \equiv m \pmod{16}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

So *m* = 0.

Main Thm and IB

Thm Let $n \ge 0$. Let $k \in \mathbb{N}$. Then $16^n(16k + 15)$ cannot be written as the sum of 14 4th powers.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Main Thm and IB

Thm Let $n \ge 0$. Let $k \in \mathbb{N}$. Then $16^n(16k + 15)$ cannot be written as the sum of 14 4th powers. Prove is by induction on n.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Thm Let $n \ge 0$. Let $k \in \mathbb{N}$. Then $16^n(16k + 15)$ cannot be written as the sum of 14 4th powers. Prove is by induction on n. **IB** n = 0. $(\forall k)[16k + 15$ is not the sum of 14 4th powers]. This was proven in an earlier part.

IH For all k', $16^{n-1}(16k'+15)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16k+15)$ is not the sum of 14 4th powers.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

IH For all k', $16^{n-1}(16k' + 15)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16k + 15)$ is not the sum of 14 4th powers.) **IS** Let $n \ge 1$. We want to show that, for all k, $16^n(16k + 15)$ is not the sum of 14 4th powers.

IH For all k', $16^{n-1}(16k' + 15)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16k + 15)$ is not the sum of 14 4th powers.) IS Let $n \ge 1$. We want to show that, for all k, $16^n(16k + 15)$ is not the sum of 14 4th powers. Assume, BWOC: $(\exists x_1, ..., x_{14})[16^n(16k + 15) = x_1^4 + \dots + x_{14}^4]$.

IH For all k', $16^{n-1}(16k' + 15)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16k + 15)$ is not the sum of 14 4th powers.) IS Let $n \ge 1$. We want to show that, for all k, $16^n(16k + 15)$ is not the sum of 14 4th powers. Assume, BWOC: $(\exists x_1, ..., x_{14})[16^n(16k + 15) = x_1^4 + \dots + x_{14}^4]$. So $x_1^4 + \dots + x_{14}^4 \equiv 0 \pmod{16}$.

IH For all k', $16^{n-1}(16k' + 15)$ is not the sum of 14 4th powers. (All we need is $16^{n-1}(16k + 15)$ is not the sum of 14 4th powers.) IS Let $n \ge 1$. We want to show that, for all k, $16^n(16k + 15)$ is not the sum of 14 4th powers. Assume, BWOC: $(\exists x_1, ..., x_{14})[16^n(16k + 15) = x_1^4 + \dots + x_{14}^4]$. So $x_1^4 + \dots + x_{14}^4 \equiv 0 \pmod{16}$. By earlier part $x_1, ..., x_{14} = 2y_1, ..., 2y_{14}$.

 $(\exists x_1, \ldots, x_{14})[16^n(16k+15) = x_1^4 + \cdots + x_{14}^4].$

 $(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$ For all *i*, $x_i = 2y_i$. So

$$(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$$

For all *i*, $x_i = 2y_i$. So

$$16^{n}(16k + 15) = (2y_{1})^{4} + \dots + (2x_{14})^{4} = 2^{4}y_{1}^{4} + \dots + 2^{4}y_{14}^{4} =$$

$$(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$$

For all *i*, $x_i = 2y_i$. So

$$16^{n}(16k + 15) = (2y_{1})^{4} + \dots + (2x_{14})^{4} = 2^{4}y_{1}^{4} + \dots + 2^{4}y_{14}^{4} =$$

$$= 16(y_1^4 + \cdots + y_{14}^4)$$

$$(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$$

For all *i*, $x_i = 2y_i$. So

$$16^{n}(16k + 15) = (2y_{1})^{4} + \dots + (2x_{14})^{4} = 2^{4}y_{1}^{4} + \dots + 2^{4}y_{14}^{4} =$$

$$= 16(y_1^4 + \cdots + y_{14}^4)$$

Divide by 16

$$(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$$

For all *i*, $x_i = 2y_i$. So

$$16^{n}(16k + 15) = (2y_{1})^{4} + \dots + (2x_{14})^{4} = 2^{4}y_{1}^{4} + \dots + 2^{4}y_{14}^{4} =$$

$$= 16(y_1^4 + \cdots + y_{14}^4)$$

Divide by 16

$$16^{n-1}(16k+15) = y_1^4 + \dots + y_{14}^4$$

$$(\exists x_1, \dots, x_{14})[16^n(16k+15) = x_1^4 + \dots + x_{14}^4].$$

For all *i*, $x_i = 2y_i$. So

$$16^{n}(16k + 15) = (2y_{1})^{4} + \dots + (2x_{14})^{4} = 2^{4}y_{1}^{4} + \dots + 2^{4}y_{14}^{4} =$$

$$= 16(y_1^4 + \cdots + y_{14}^4)$$

Divide by 16

$$16^{n-1}(16k+15) = y_1^4 + \dots + y_{14}^4$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

This is a contradiction.