START

RECORDING

Mathematical Induction: Introduction and Basic Problems

CMSC 250

INTRO AND BASIC SEQUENCE PROBLEMS

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.
- We will prove two separate things:

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.
- We will prove two separate things:

1. For $n=0, P(n)$ is true

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.
- We will prove two separate things:

1. For $n=0, P(n)$ is true (simplifiable to " $P(0)$ is true").

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.
- We will prove two separate things:

1. $P(0)$ is true

The Idea Behind Induction

- Suppose that we want to prove that a proposition $P(n)$ is true for all natural numbers n.
- We will prove two separate things:

1. $P(0)$ is true.
2. For all $n \geq 1, P(n) \Rightarrow \mathrm{P}(\mathrm{n}+1)$

The Induction Principle

- From
- Base Case (BC): P(0)
- Induction Step (IS): $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$
- We can deduce $\forall n \geq 0, P(n)$.

The Induction Principle

- From
- Base Case (BC): P(0)
- Induction Step (IS): $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$
- We can deduce $\forall n \geq 0, P(n)$.
- Why does the Induction Principle Work?

The Induction Principle

- From
- Base Case (BC): P(0)
- Induction Step (IS): $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$
- We can deduce $\forall n \geq 0, P(n)$.
- Why does the Induction Principle Work?
- Lets say you have the BC and the IS. You want to know if $P(17)$ is true.
- You have
- $P(0)$
- $P(0) \Rightarrow P(1)$
- $P(1) \Rightarrow P(2)$
- :
- $P(16) \Rightarrow P(17)$
- Hence you have $\mathrm{P}(17)$

More Succinctly

- If you have
- BC: $P(0)$
- IS: $\forall n \geq 0, P(n) \Longrightarrow P(n+1)$
- Then for any $n \geq 0$, one can construct a proof of $P(n)$.
- Hence for any $n \geq 0, P(n)$ is true.

How We'll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may sometimes seem) that $P(0)$ is true.

How We'll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may sometimes seem) that $P(0)$ is true
2. Inductive hypothesis: We will assume that, for $n \geq 0, P(n)$ holds.

How We'll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may sometimes seem) that $P(0)$ is true
2. Inductive hypothesis: We will assume that, for $n \geq 0, P(n)$ holds.
3. Inductive step: We will prove that if $P(n)$ holds, then $P(n+1)$ holds.

How We'll Make It Work

1. Inductive base: We will prove (explicitly, no matter how dumb it may sometimes seem) that $P(0)$ is true
2. Inductive hypothesis: We will assume that, for $n \geq 0, P(n)$ holds.
3. Inductive step: We will prove that if $P(n)$ holds, then $P(n+1)$ holds.

- So everything falls into place!

SUM PROBLEMS

$$
\sum_{i=0}^{n} f(n)
$$

The Gaussian Sum

- We will prove that the sum of the first n numbers is equal to $\frac{n(n+1)}{2}$.
- Symbolically:

$$
\underbrace{1+2+3+\cdots+(n-1)+n}_{\sum_{i=1}^{n} i=\frac{n(n+1)}{2}}=\frac{n(n+1)}{2}
$$

Inductive Base

- For $n=0$, we will prove that $P(0)$ holds

Remember: $P(n)$ is
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

$$
\sum_{i=1}^{0} i=\frac{0(0+1)}{2}
$$

- LHS: $\sum_{i=1}^{0} i=0$ (recall this fact from our sequences lecture)
- RHS: $\frac{0(0+1)}{2}=0$
- Since LHS $=$ RHS for $n=0, P(0)$ has been proven true.

Inductive Hypothesis

- For $n \geq 0$, we assume that $P(n)$ is true:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

So, we assume that

$$
\begin{aligned}
& P(n) \Leftrightarrow \sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
& \text { is true for an } \mathrm{n} \geq 0
\end{aligned}
$$

- Inductive Hypothesis done!

Inductive Step

- Given that $P(n)$ is true, we will prove that $P(n+1)$ is true.

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \Rightarrow \sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}
$$

Inductive Step

- Given that $P(n)$ is true, we will prove that $P(n+1)$ is true.

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \Rightarrow \sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}
$$

Inductive Step

- Given that $P(n)$ is true, we will prove that $P(n+1)$ is true.

This is our goal!

Inductive Step, contd. $\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}$

$$
\sum_{i=1}^{n+1} i=1+2+\cdots+n+(n+1)
$$

Inductive Step, contd $\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}$

$$
\begin{equation*}
\sum_{i=1}^{n+1} i=1+2+\cdots+n+(n+1)=\sum_{i=1}^{n} i+(n+1) \tag{1}
\end{equation*}
$$

Inductive Step, contd $\left(\sum_{i=1}^{n+1} i=\frac{(n+1)(n+2)}{2}\right)$
 - Starting from the LHS of the relation to prove, wehave:

$$
\begin{equation*}
\sum_{i=1}^{n+1} i=1+2+\cdots+n+(n+1)=\sum_{i=1}^{n} i+(n+1) \tag{1}
\end{equation*}
$$

- From the Inductive Hypothesis, we have that

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

- Starting from the LHS of the relation to prove, werhave:

$$
\begin{equation*}
\sum_{i=1}^{n+1} i=1+2+\cdots+n+(n+1)=\sum_{i=1}^{n} i+(n+1) \tag{1}
\end{equation*}
$$

- From the Inductive Hypothesis, we have that

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

- Starting from the LHS of the relation to prove, we have:

$$
\sum_{i=1}^{n+1} i=1+2+\cdots+n+(n+1)=\sum_{i=1}^{n} i+(n+1)(1)
$$

- From the Inductive Hypothesis, we have that

$$
\begin{equation*}
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \tag{2}
\end{equation*}
$$

- Substituting (2) into (1) yields (next slide):

Inductive Step, contd.

$$
\begin{aligned}
\sum_{i=1}^{n+1} i=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}= & \frac{(n+2)(n+1)}{2} \\
& =R H S
\end{aligned}
$$

Inductive Step, contd.

$$
\begin{array}{r}
\sum_{i=1}^{n+1} i=\frac{n(n+1)}{2}+(n+1)=\frac{n(n+1)}{2}+\frac{2(n+1)}{2}=\frac{(n+2)(n+1)}{2} \\
=R H S
\end{array}
$$

- So, when $P(n)$ is true, $P(n+1)$ was also proven true.
- We conclude that $P(n)$ is true $\forall n \geq 0$.
- WE ARE DONE.

Here's Another!

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Inductive Base

- For $n=0$, LHS $=\sum_{i=1}^{0} i^{2}=0$
- RHS $=\frac{0(0+1)(2 * 0+1)}{2}=0$
- Since LHS = RHS, $P(0)$ holds and we are done.

Inductive Base

- For $n=0$, LHS $=\sum_{i=1}^{0} i^{2}=0$
- RHS $=\frac{0(0+1)(2 * 0+1)}{2}=0$
- Since LHS = RHS, $P(0)$ holds and we are done.
- You could also start from $n=1$! LHS = RHS in both cases
- $n=0$ sometimes makes the math easier (RHS in this case)

Inductive Hypothesis

- Suppose that $n \geq 0$. (Or 1 in the alternative scenario)
- We will then assume $P(n)$, i.e:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Inductive Step

- We will now attempt to prove $P(n+1)$, i.e

Careful with
factoring please!!!

$$
\sum_{i=1}^{n+1} i^{2}=\frac{(n+1)(n+2)(2 n+3)}{6}
$$

Inductive Step

- We will now attempt to prove $P(n+1)$, i.e

Careful with
factoring please!!!

$$
\sum_{i=1}^{n+1} i^{2}=\frac{(n+1)(n+2)(2 n+3)}{6}
$$

- By leveraging associativity of sum, the LHS can be written as follows:

$$
\sum_{i=1}^{n+1} i^{2}=\sum_{i=1}^{n} i^{2}+(n+1)^{2}
$$

Inductive Step

- We will now attempt to prove $P(n+1)$, i.e

Careful with
factoring please!!!

$$
\sum_{i=1}^{n+1} i^{2}=\frac{(n+1)(n+2)(2 n+3)}{6}
$$

- By leveraging associativity of sum, the LHS can be written as follows:

$$
\sum_{i=1}^{n+1} i^{2}=\sum_{i=1}^{n} i^{2}+(n+1)^{2}
$$

Inductive Step

- By IH, we can now write:

$$
\sum_{i=1}^{n+1} i^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}
$$

Inductive Step

- By IH, we can now write:

$$
\sum_{i=1}^{n+1} i^{2}=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}
$$

- Remember: we want this to be equal to

$$
\frac{(n+1)(n+2)(2 n+3)}{6}
$$

-We will fearlessly manipulate the algebra until it does!

Inductive Step - Algebra

$$
\begin{aligned}
& \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)^{2}}{6} \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6}=\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}
\end{aligned}
$$

Inductive Step - Algebra

$$
\begin{aligned}
& \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)^{2}}{6} \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6}=\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}
\end{aligned}
$$

- If only we could prove that $2 n^{2}+7 n+6=(n+2)(2 n+3)$, we'd be done!

Inductive Step - Algebra

$$
\begin{aligned}
& \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=\frac{n(n+1)(2 n+1)}{6}+\frac{6(n+1)^{2}}{6} \\
& =\frac{(n+1)[n(2 n+1)+6(n+1)]}{6}=\frac{(n+1)\left[2 n^{2}+7 n+6\right]}{6}
\end{aligned}
$$

- If only we could prove that $2 n^{2}+7 n+6=(n+2)(2 n+3)$, we'd be done!
- But.... $(n+2)(2 n+3)=2 n^{2}+3 n+4 n+6=2 n^{2}+7 n+6$!
- So we're done.

Sums of Powers of 2

- Prove that the sum of the first n terms of a geometric sequence with $a_{1}=1$ is equal to $2^{n}-1$.

Sums of Powers of 2

- Prove that the sum of the first n terms of a geometric sequence with $a_{1}=1$ is equal to $2^{n}-1$.
- Symbolically:

$$
\sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.
- Inductive base: We attempt to prove $P(1)$.

$$
P(1): \sum_{i=0}^{1-1} 2^{i}=2^{1}-1 \Leftrightarrow 1=1
$$

So $P(1)$ is true.

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.
- Inductive base: We attempt to prove $P(1)$.

$$
P(1): \sum_{i=0}^{1-1} 2^{i}=2^{1}-1 \Leftrightarrow 1=1
$$

So $P(1)$ is true.

- Inductive hypothesis: Suppose $n \geq 0$. We assume $P(n)$, i.e

$$
\sum_{i=0}^{n-1} 2^{i}=2^{n}-1
$$

Proof (contd.)

- Inductive step: We will attempt to prove $P(n+1)$, i.e

From the LHS to the RHS:

$$
\text { LHS }=\sum_{i=0}^{n} 2^{i}=\sum_{i=0}^{n-1} 2^{i}+2^{n}=2^{n}-1+2^{n}=2\left(2^{n}\right)-1=2^{n+1}-1=\text { RHS }
$$

Sums of Powers of m

- Prove that the sum of the first n terms of a geometric sequence with $m \in(\mathbb{R}-\{1\})$ and $a_{1}=1$ is equal to $\frac{m^{n}-1}{m-1}$.

Sums of Powers of m

- Prove that the sum of the first n terms of a geometric sequence with $m \in(\mathbb{R}-\{1\})$ and $a_{1}=1$ is equal to $\frac{m^{n}-1}{m-1}$.
- Symbolically:

$$
\sum_{i=0}^{n-1} m^{i}=\frac{m^{n}-1}{m-1}
$$

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.
- Inductive base: We attempt to prove $P(1)$.

$$
P(1): \sum_{i=0}^{1-1} m^{i}=\frac{m^{1}-1}{m-1} \Leftrightarrow \sum_{i=0}^{0} m^{i}=\frac{m^{1}-1}{m-1} \Leftrightarrow 1=1
$$

So $P(1)$ is true.
Note: In the base case we are assuming $m \neq 1$

Proof

- Proof : We attempt to prove $P(n), \forall n \in \mathbb{N}$. We proceed via induction on n.
- Inductive base: We attempt to prove $P(1)$.

$$
P(1): \sum_{i=0}^{1-1} m^{i}=\frac{m^{1}-1}{m-1} \Leftrightarrow \sum_{i=0}^{0} m^{i}=\frac{m^{1}-1}{m-1} \Leftrightarrow 1=1
$$

So $P(1)$ is true.
Note: In the base case we are assuming $m \neq 1$

- Inductive hypothesis: Suppose $n \geq 0$. We assume $P(n)$, i.e

$$
\sum_{i=0}^{n-1} m^{i}=\frac{m^{n}-1}{m-1}
$$

Proof (contd.)

- Inductive step: We will attempt to prove $P(n+1)$, i.e

$$
\sum_{i=0}^{n} m^{i}=\frac{m^{n+1}-1}{m-1}
$$

From the LHS to the RHS:

$$
=\sum_{i=0}^{L H S_{n}} m^{i}=\sum_{i=0}^{n-1} m^{i}+m^{n}=\frac{m^{n}-1}{m-1}+m^{n}=\frac{m-1+m^{n}(m-1)}{m-1}=\frac{m^{n+1}-1}{m-1}=R H S \square
$$

Base Cases

- It is standard to change your base cases to later in your index if the theorem you are trying to prove starts later

COIN PROBLEMS!

A Coin Problem

- We will prove that every dollar amount ≥ 4 cents can be exclusively paid for by 2 and/or 5 cent coins.

Theorem Expressed in Quantifiers

- All quantifiers implicitly assumed over \mathbb{N}.

$$
(\forall n \geq 4)\left(\exists n_{1}, n_{2}\right)\left[n=2 n_{1}+5 n_{2}\right]
$$

Inductive Base

- The least amount of money we are required to prove the statement for is 4 ¢, so we will attempt to prove $P(4)$.

Inductive Base

- The least amount of money we are required to prove the statement for is 4 C , so we will attempt to prove $P(4)$.
- For $n=4$, we have 4ζ. Since $4 \zeta=2 \times 2 ¢$, we are done (we have shown that the amount of 4ζ can be exclusively paid for by using only 2 and/or 5 cent coins)

Inductive Hypothesis

- Let $\mathrm{n} \geq 4$.
- Assume $P(n) \Leftrightarrow\left(\exists n_{1}, n_{2}\right)\left[n=2 n_{1}+5 n_{2}\right]$

Inductive Step

- We will prove that $P(n) \Rightarrow P(n+1)$, i.e that we can pay an amount of money equal to $n+1$ cents using only $2 ¢$ or $5 ¢$ coins.

Inductive Step

- We will prove that $P(n) \Rightarrow P(n+1)$, i.e that we can pay an amount of money equal to $n+1$ cents using only 2ζ or 5ζ coins.
- In terms of algebra, what we want to prove is:

$$
\left(\exists n_{3}, n_{4} \in \mathbb{N}\right)\left[n+1=2 n_{3}+5 n_{4}\right]
$$

Different variables from IH!

Inductive Step (contd.)

- From the Inductive Hypothesis (IH), we have that for some specific positive integers n_{1} and n_{2} :

$$
n=2 n_{1}+5 n_{2}
$$

Inductive Step (contd.)

- From the Inductive Hypothesis (IH), we have that for some specific positive integers n_{1} and n_{2} :

$$
n=2 n_{1}+5 n_{2}
$$

1. Case \#1: $n_{1} \geq 2$

- I have at least two $2 ¢$ coins, so I can take away two $2 ¢$ coins and add one

5¢ coin

Inductive Step (contd.)

- From the Inductive Hypothesis (IH), we have that for some specific positive integers n_{1} and n_{2} :

$$
n=2 n_{1}+5 n_{2}
$$

1. Case \#1: $n_{1} \geq 2$

- I have at least two $2 ¢$ coins, so I can take away two $2 ¢$ coins and add one 5 ¢ coin
- By adding 1 on both sides of the IH we obtain:

$$
\begin{gathered}
n+1=2 n_{1}+5 n_{2}+1=2 n_{1}+5 n_{2}+(5-2 * 2)= \\
=\left(2 n_{1}-4\right)+\left(5 n_{2}+5\right)=2 \underbrace{\left(n_{1}-2\right)}_{n_{3}}+5 \underbrace{\left(n_{2}+1\right)}_{n_{4}}=2 n_{3}+5 n_{4}
\end{gathered}
$$

Inductive Step (contd.)

- From the Inductive Hypothesis (IH), we have that for some specific positive integers n_{1} and n_{2} :

$$
n=2 n_{1}+5 n_{2}
$$

1. Case \#1: $n_{1} \geq 2$

- I have at least two 2 ¢ coins, so I can take away two $2 ¢$ coins and add one 5 ¢ coin
- By adding 1 on both sides of the IH we obtain:

$$
\begin{gathered}
n+1=2 n_{1}+5 n_{2}+1=2 n_{1}+5 n_{2}+(5-2 * 2)= \\
=\left(2 n_{1}-4\right)+\left(5 n_{2}+5\right)=2 \underbrace{\left(n_{1}-2\right)}_{\substack{n_{1}-2 \geq 0 \text { because } \\
n_{1} \geq 2}}+\underbrace{5\left(n_{2}+1\right)}_{\text {In } \mathbb{N} \text { by closure }}=2 n_{3}+5 n_{4}
\end{gathered}
$$

Inductive Step

2. Case \#2: $n_{2} \geq 1$

- I have at least one $5 ¢$ coin so I can take away one $5 ¢$ coin and add three $2 ¢$ coins

Inductive Step

2. Case \#2: $n_{2} \geq 1$

- I have at least one 5 ¢ coin so I can take away one 5 ¢ coin and add three 2ל coins
- By adding 1 on both sides of the IH we obtain:

$$
\begin{aligned}
n+1 & =2 n_{1}+5 n_{2}+1=2 n_{1}+5 n_{2}+(3 * 2-5)= \\
& =2 \underbrace{\left(n_{1}+3\right)}_{n_{3}}+5 \underbrace{\left(n_{2}-1\right)}_{n_{4}}=2 n_{3}+5 n_{4}
\end{aligned}
$$

Inductive Step

2. Case \#2: $n_{2} \geq 1$

- I have at least one 5 ¢ coin so I can take away one 5 ¢ coin and add three $2 ¢$ coins
- By adding 1 on both sides of the IH wwe obtain:

$$
\begin{aligned}
k+1= & 2 k_{1}+5 k_{2}+1=2 k_{1}+5 k_{2}+(3 * 2-5)= \\
= & 2 \underbrace{\left(n_{1}+3\right)}_{\begin{array}{c}
\left(n_{1}+3\right) \in \mathbb{N} \\
\text { by closure }
\end{array}}+5 \underbrace{\left(n_{2}-1\right)}_{\begin{array}{c}
n_{2}-1 \geq 0 \\
\text { because } \\
n_{2} \geq 1
\end{array}}=2 n_{3}+5 n_{4}
\end{aligned}
$$

Inductive Step

3. Case \#3: $\left(n_{1} \leq 1\right) \wedge\left(n_{2}=0\right)$

- This case means that we have either 0 or $2 ¢$ at our disposal.

Inductive Step

3. Case \#3: $\left(n_{1} \leq 1\right) \wedge\left(n_{2}=0\right)$

- This case means that we have either 0 or $2 ¢$ at our disposal.
- But this is not possible, since we want to prove the theorem only for values ≥ 4 c
- So we're done. \square

A Coin Problem for You!

Prove to me that every dollar amount ≥ 20 cents can be exclusively paid for through combinations of 5 -cent coins and 6 -cent coins!

Go to Breakout Rooms

TREATING INEQUALITIES

What if your theorem only holds when $n \geq 4$?

- We want to compare 2^{n} and n !.

n	2^{n}	$n!$
1	2	1
2	4	2
3	8	6
4	16	24

What if your theorem only holds when $n \geq 4$?

- We want to compare 2^{n} and n !.

n	2^{n}	$n!$
1	2	1
2	4	2
3	8	6
4	16	24

- It seems like $(\forall n \geq 4)\left[2^{n}<n!\right]$
- Our current Induction Principle cannot handle this!
- Don't Panic!

Modified Induction Principle

- From
- Base Case (BC): $P(a)$
- Induction Step (IS): $\forall n \geq a, P(n) \Longrightarrow P(n+1)$

Modified Induction Principle

- From
- Base Case (BC): $P(a)$
- Induction Step (IS): $\forall n \geq a, P(n) \Longrightarrow P(n+1)$
- We can deduce
- $\forall n \geq a, P(n)$

Modified Induction Principle

- From
- Base Case (BC): $P(a)$
- Induction Step (IS): $\forall n \geq a, P(n) \Longrightarrow P(n+1)$
- We can deduce
- $\forall n \geq a, P(n)$
- Why does the Modified Induction Principle Work?
- Similar to who the original Induction Principle worked.

Here's One with an Inequality!

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.

Here's One with an Inequality!

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH : For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!

Here's One with an Inequality!

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH: For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $P(n) \Rightarrow P(n+1)$, i.e

$$
\left(2^{n}<n!\right) \Rightarrow\left(2^{n+1}<(n+1)!\right)
$$

Inductive Step...

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH : For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $2^{n+1}<(n+1)$!

Inductive Step...

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH : For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $2^{n+1}<(n+1)$!

- From algebra, we have that $2^{n+1}=2^{n} \cdot 2$

Inductive Step...

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH: For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $2^{n+1}<(n+1)$!

- From algebra, we have that $2^{n+1}=2^{n} \cdot 2$
- From the $I H$, we have that $2^{n}<n!\stackrel{2>0}{\Longleftrightarrow} 2^{n} \cdot 2<n!\cdot 2$

Inductive Step...

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH: For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $2^{n+1}<(n+1)$!

- From algebra, we have that $2^{n+1}=2^{n} \cdot 2$
- From the IH, we have that $2^{n}<n!\stackrel{2>0}{\Longleftrightarrow} 2^{n} \cdot 2<n!\cdot 2$
- Since $\mathrm{n} \geq 4$, we have that $2<n+1 \stackrel{n!>0}{\Longleftrightarrow} n!\cdot 2<n!(n+1)$

Inductive Step...

- Prove that for all integers n at least $4,2^{n}<n$!

1. IB: We will prove $P(4) \Leftrightarrow 2^{4}<4$! Done.
2. IH: For $n \geq 4$, we assume $P(n)$, i.e $2^{n}<n$!
3. IS: We will prove $2^{n+1}<(n+1)$!

- From algebra, we have that $2^{n+1}=2^{n} \cdot 2$
- From the $I H$, we have that $2^{n}<n!\stackrel{2>0}{\Longleftrightarrow} 2^{n} \cdot 2<n!\cdot 2$
- Since $n \geq 4$, we have that $2<n+1 \stackrel{n!>0}{\rightleftharpoons} n!\cdot 2<n!(n+1)$
- $(2) \stackrel{(3)}{\Rightarrow} 2^{n} \cdot 2<(n+1)!\stackrel{(1)}{\Leftrightarrow} 2^{n+1}<(n+1)$!

STOP

RECORDING

