Predicate and Quantifier Review

250H

Negating Quantified Expressions

Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every $x, P(x)$ is false	There is an x for which $P(x)$ is true
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false	$P(x)$ is true for every x

The Order of Quantifiers

- Order Matters
- Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
- The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes $P(x, y)$ true for every x.
- There must be a particular value of y for which $P(x, y)$ is true regardless of the choice of x.
- $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which $P(x, y)$ is true
- No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which $P(x, y)$ is true
- $\quad \forall x \exists y P(x, y)$: y can depend on x

■ $\exists y \forall x P(x, y)$: y is a constant independent of x

Logical Operator: Conditional Statements

Common ways to express $\mathrm{p} \rightarrow \mathrm{q}$:

- if p, then q
- p implies q
- if p, q
- p only if q
- p is sufficient for q
- a sufficient condition for q is p
- q if p
- q whenever p
- q when p
- q is necessary for p
- a necessary condition for p is q
- q follows from p
- qunless $\neg p$

Example 1: Translating Math Statements into Statements

- Translate the statement "The sum of two positive integers is always positive" into a logical expression
- Rewrite it so that the implied quantifiers and a domain are shown
- For every two integers, if these integers are both positive, then the sum of these integers is positive.
- Introduce the variables x and y to obtain

■ For all positive integers x and $y, x+y$ is positive.

- Quantify
- $\forall x \forall y((x>0) \wedge(y>0) \rightarrow(x+y>0))$, where the domain for both variables consists of all integers.
■ Alternate Solution: $\forall x \forall y(x+y>0)$, where the domain for both variables consists of all positive integers.

Example 2: Translating Math Statements into Statements

- Translate the statement: Every real number except zero has a multiplicative inverse. (A multiplicative inverse of a real number x is a real number y such that $x y=1$.)
- Rewrite it so that the implied quantifiers and a domain are shown

■ For every real number x except zero, x has a multiplicative inverse.

- Introduce the variables x and y to obtain
- For every real number x, if $x \neq 0$, then there exists a real number y such that $x y=1$
- Quantify
- $\quad \forall x((x \neq 0) \rightarrow \exists y(x y=1))$

Example 3: Translating Math Statements into Statements

- Translate the statement: There exists two distinct rational numbers such that $x y=0$.
- $\exists x, y \in \mathbf{Q}((x \neq y) \wedge(x y=0))$

Example 4: Translating Math Statements into Statements

- Translate the statement: There exists an infinite number of natural numbers.
- $\forall x \in \mathbf{N} \exists y \in \mathbf{N}(y>x)$

Example 5: Translating Math Statements into Statements

- Translate the statement: There are no natural numbers x, y such that $x y=-1$.
- $\neg(\exists x, y(x y=-1))$
- $\quad \forall x, y \in \mathbf{N}(x y \neq-1)$

