Predicate and Quantifier Review

250H

Negating Quantified Expressions

Negation	Equivalent Statement	When Is Negation True?	When False?
¬∃хР(х)	∀x¬P (x)	For every x, P (x) is false	There is an x for which P (x) is true
ר∀xP (x)	∃ x¬P (x)	There is an x for which P (x) is false	P (x) is true for every x

The Order of Quantifiers

- Order Matters
 - Unless all quantifiers are universal quantifiers or all are existential quantifiers
- The statements $\exists y \forall x P(x, y)$ and $\forall x \exists y P(x, y)$ are not logically equivalent
 - The statement $\exists y \forall x P(x, y)$ is true if and only if there is a y that makes P(x, y) true for every x.
 - There must be a particular value of y for which P (x, y) is true regardless of the choice of x.
 - $\forall x \exists y P(x, y)$ is true if and only if for every value of x there is a value of y for which P(x, y) is true
 - No matter which x you choose, there must be a value of y (possibly depending on the x you choose) for which P (x, y) is true
 - $\forall x \exists y P (x, y): y \text{ can depend on } x$
 - $\exists y \forall x P (x, y)$: y is a constant independent of x

Logical Operator: Conditional Statements

Common ways to express $p \Rightarrow q$:

- if p, then q
- p implies q
- if p, q
- ponly if q
- p is sufficient for q
- a sufficient condition for q is p
- q if p
- q whenever p
- q when p
- q is necessary for p
- a necessary condition for p is q
- q follows from p
- q unless ¬p

Example 1: Translating Math Statements into Statements

- Translate the statement "The sum of two positive integers is always positive" into a logical expression
 - Rewrite it so that the implied quantifiers and a domain are shown
 - For every two integers, if these integers are both positive, then the sum of these integers is positive.
 - Introduce the variables x and y to obtain
 - For all positive integers x and y, x + y is positive.
 - Quantify
 - $\forall x \forall y((x > 0) \land (y > 0) \Rightarrow (x + y > 0))$, where the domain for both variables consists of all integers.
 - Alternate Solution: $\forall x \forall y(x + y > 0)$, where the domain for both variables consists of all positive integers.

Example 2: Translating Math Statements into Statements

- Translate the statement: Every real number except zero has a multiplicative inverse.
 (A multiplicative inverse of a real number x is a real number y such that xy = 1.)
 - Rewrite it so that the implied quantifiers and a domain are shown
 - For every real number x except zero, x has a multiplicative inverse.
 - Introduce the variables x and y to obtain
 - For every real number x, if $x \neq 0$, then there exists a real number y such that xy = 1
 - Quantify
 - $\forall x((x \neq 0) \Rightarrow \exists y(xy = 1))$

Example 3: Translating Math Statements into Statements

- Translate the statement: There exists two distinct rational numbers such that xy = 0.
 - $\exists x, y \in \mathbf{Q} ((x \neq y) \land (xy = 0))$

Example 4: Translating Math Statements into Statements

- Translate the statement: There exists an infinite number of natural numbers.
 - $\circ \quad \forall x \in \mathbf{N} \exists y \in \mathbf{N} (y > x)$

Example 5: Translating Math Statements into Statements

- Translate the statement: There are no natural numbers x, y such that xy = -1.
 - o ¬(∃x,y (xy = -1))
 - $\forall x, y \in \mathbf{N} (xy \neq -1)$