SATisfiability

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge \neg x_{3} \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT}$?
Yes $x_{1}=T, x_{2}=F, x_{3}=F$.

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge \neg x_{3} \in \operatorname{SAT} ?
$$

In any SAT assignment need $x_{1}=T$ and $x_{3}=F$ so $\neg x_{1} \vee x_{3}$ is F. Hence NOT in SAT.

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search.

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search. What are the PROS and CONS of this approach?

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search. What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search. What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.
2. CON Takes time roughly 2^{n} in the worst case.

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.
2. CON Takes time roughly 2^{n} in the worst case.
3. CAVEAT Might do well on a formula that is in SAT since the algorithm can quit as soon as it finds a SAT assignment.
On the next few slides discuss the following:

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.
2. CON Takes time roughly 2^{n} in the worst case.
3. CAVEAT Might do well on a formula that is in SAT since the algorithm can quit as soon as it finds a SAT assignment.
On the next few slides discuss the following:
4. Is there a better algorithm?

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.
2. CON Takes time roughly 2^{n} in the worst case.
3. CAVEAT Might do well on a formula that is in SAT since the algorithm can quit as soon as it finds a SAT assignment.
On the next few slides discuss the following:
4. Is there a better algorithm?
5. Is there a class of formulas for which there is a better algorithm?

Complexity of SAT

SAT Problem Given ϕ, determine if $\phi \in$ SAT.
One Approach Form Truth Table and see if any of the rows are T. This is often called a brute force search.
What are the PROS and CONS of this approach?

1. PRO Easy conceptually. Easy to code up.
2. CON Takes time roughly 2^{n} in the worst case.
3. CAVEAT Might do well on a formula that is in SAT since the algorithm can quit as soon as it finds a SAT assignment.
On the next few slides discuss the following:
4. Is there a better algorithm?
5. Is there a class of formulas for which there is a better algorithm?
6. Is this problem interesting to people outside of Logic?

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.
Is there a better algorithm. Vote

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.
Is there a better algorithm. Vote

- YES
- NO
- UNKNOWN TO SCIENCE

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.
Is there a better algorithm. Vote

- YES
- NO
- UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.
Is there a better algorithm. Vote

- YES
- NO
- UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If ϕ is in 3-CNF form (we'll define that later) then there exists a randomized 1.306^{n} algorithm.

Is There a Better Algorithm?

Writing out the truth table takes roughly 2^{n} steps.
Is there a better algorithm. Vote

- YES
- NO
- UNKNOWN TO SCIENCE

YES and UNKNOWN TO SCIENCE
YES If ϕ is in 3-CNF form (we'll define that later) then there exists a randomized 1.306^{n} algorithm.

UNKNOWN TO SCIENCE If there are no restrictions on the formula, then unknown if there is an algorithm better than $\sim 2^{n}$.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?

Contrast:

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?
Contrast:
- There is an algorithm for SAT that takes $\sim(1.1)^{n}$.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?
Contrast:
- There is an algorithm for SAT that takes $\sim(1.1)^{n}$.
- There is an algorithm for SAT that takes $\sim n^{100}$.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?
Contrast:
- There is an algorithm for SAT that takes $\sim(1.1)^{n}$.
- There is an algorithm for SAT that takes $\sim n^{100}$.

In practice the (1.1) ${ }^{n}$ algorithm is better.

What is Better?

There are many algorithms that work in time α^{n} for some $1<\alpha<2$.

- These algorithms are very clever but are still Brute Force Search with Tricks.
- We want to say An Algorithm that is NOT brute force Search with Tricks. How can we define that?
Contrast:
- There is an algorithm for SAT that takes $\sim(1.1)^{n}$.
- There is an algorithm for SAT that takes $\sim n^{100}$.

In practice the (1.1) ${ }^{n}$ algorithm is better.
However, the n^{100} algorithm is not doing brute force search!

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?

Polynomial Time

We now have our clean question:
Is SAT in Polynomial Time?
Question If SAT is in time n^{100} why do we care?

Polynomial Time

We now have our clean question: Is SAT in Polynomial Time?

Question If SAT is in time n^{100} why do we care?
Answer If SAT is in time n^{100} then there is an algorithm that solves SAT that is not doing brute force search. It is doing something clever. That cleverness can likely be used to come up with a much better algorithm.

Polynomial Time

We now have our clean question: Is SAT in Polynomial Time?

Question If SAT is in time n^{100} why do we care?
Answer If SAT is in time n^{100} then there is an algorithm that solves SAT that is not doing brute force search. It is doing something clever. That cleverness can likely be used to come up with a much better algorithm.

Notation We denote Polynomial Time by P.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form
$C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.
4. DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.
4. DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.
5. k-DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of exactly k literals.

2SAT is in P

2SAT input is $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly 2 literals.

2SAT is in P

2SAT input is $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly 2 literals.

2SAT is in P. Might be a HW. Intuition for now. Consider

$$
(x \vee y)
$$

2SAT is in P

2SAT input is $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly 2 literals.

2SAT is in P. Might be a HW. Intuition for now. Consider

$$
(x \vee y)
$$

If x is F then y is T.

2SAT is in P

2SAT input is $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly 2 literals.

2SAT is in P. Might be a HW. Intuition for now. Consider

$$
(x \vee y)
$$

If x is F then y is T.
More generally, with 2SAT a lot of values are forced.

2SAT is in P

2SAT input is $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly 2 literals.

2SAT is in P. Might be a HW. Intuition for now. Consider

$$
(x \vee y)
$$

If x is F then y is T.
More generally, with 2SAT a lot of values are forced.
This is used in the algorithm for it.

DNFSAT is in \mathbf{P}

DNFSAT is the set of all formulas in SAT of the form
$C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in \mathbf{P}

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .

DNFSAT is in \mathbf{P}

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .
Example $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee \cdots$
The \cdots means you can put any thing you want there.
Without knowing anything else, this formula is SATisfiable.
Set $x_{1}=T, x_{2}=F, x_{3}=T$.

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .
Example $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee \cdots$
The \cdots means you can put any thing you want there.
Without knowing anything else, this formula is SATisfiable.
Set $x_{1}=T, x_{2}=F, x_{3}=T$.
More Generally

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .
Example $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee \ldots$
The \cdots means you can put any thing you want there.
Without knowing anything else, this formula is SATisfiable.
Set $x_{1}=T, x_{2}=F, x_{3}=T$.
More Generally Given $\phi=C_{1} \vee \cdots C_{m}$ where each C_{i} is a \wedge of literals,

DNFSAT is in P

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .
Example $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee \cdots$
The \cdots means you can put any thing you want there.
Without knowing anything else, this formula is SATisfiable.
Set $x_{1}=T, x_{2}=F, x_{3}=T$.
More Generally Given $\phi=C_{1} \vee \cdots C_{m}$ where each C_{i} is a \wedge of literals,

- If there is some C_{i} that does not have both a variable and its negation, then $\phi \in$ DNFSAT.

DNFSAT is in \mathbf{P}

DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

DNFSAT is in P .
Example $\left(x_{1} \wedge \neg x_{2} \wedge x_{3}\right) \vee \cdots$
The \cdots means you can put any thing you want there.
Without knowing anything else, this formula is SATisfiable.
Set $x_{1}=T, x_{2}=F, x_{3}=T$.
More Generally Given $\phi=C_{1} \vee \cdots C_{m}$ where each C_{i} is a \wedge of literals,

- If there is some C_{i} that does not have both a variable and its negation, then $\phi \in$ DNFSAT.
- Otherwise $\phi \notin$ DNFSAT.

Is 3SAT in P ?

Is 3SAT in P? Vote:

Is 3SAT in P ?

Is 3SAT in P? Vote:

- YES, and this is known (though probably hard).

Is 3SAT in P ?

Is 3SAT in P? Vote:

- YES, and this is known (though probably hard).
- NO, and this is known, (though probably hard).

Is 3SAT in P ?

Is 3SAT in P? Vote:

- YES, and this is known (though probably hard).
- NO, and this is known, (though probably hard).
- UNKNOWN TO SCIENCE.

Is 3SAT in P ?

Is 3SAT in P? Vote:

- YES, and this is known (though probably hard).
- NO, and this is known, (though probably hard).
- UNKNOWN TO SCIENCE.

UNKNOWN TO SCIENCE In fact, The $(1.306)^{n}$ algorithm is the best algorithm we know.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this?

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.
2. Known techniques you can't get $\alpha \geq 2 \cos (\pi / 8) \sim 1.848$.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in $\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.
2. Known techniques you can't get $\alpha \geq 2 \cos (\pi / 8) \sim 1.848$.
3. Known techniques you can't get $\alpha>2 \cos (\pi / 7) \sim 1.848$.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in
$\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.
2. Known techniques you can't get $\alpha \geq 2 \cos (\pi / 8) \sim 1.848$.
3. Known techniques you can't get $\alpha>2 \cos (\pi / 7) \sim 1.848$.

Answer $2 \cos (\pi / 7)$. So new ideas are needed.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in
$\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.
2. Known techniques you can't get $\alpha \geq 2 \cos (\pi / 8) \sim 1.848$.
3. Known techniques you can't get $\alpha>2 \cos (\pi / 7) \sim 1.848$.

Answer $2 \cos (\pi / 7)$. So new ideas are needed.
Upshot Determining if 3SAT is in P is a hard problem.

What Lower Bounds are Known?

It is known (Ryan Williams proved it) that 3SAT cannot be done in
$\sim n^{\alpha}$ time and log-space where VOTE

1. $\alpha=1.5$
2. $\alpha=\frac{\sqrt{5}-1}{2}$ (the Golden Ratio)
3. $\alpha=2 \cos (\pi / 7) \sim 1.802$
4. For all $\alpha<2$
5. 2

Answer $2 \cos (\pi / 7)$. I'm surprised too! Used hard math.
Is there hope to improve this? VOTE on which is known:

1. Known techniques you can't get $\alpha \geq 2$.
2. Known techniques you can't get $\alpha \geq 2 \cos (\pi / 8) \sim 1.848$.
3. Known techniques you can't get $\alpha>2 \cos (\pi / 7) \sim 1.848$.

Answer $2 \cos (\pi / 7)$. So new ideas are needed.
Upshot Determining if 3SAT is in P is a hard problem.
How Long Has It Been Open? Posed in 1971, Sort of.

Is this problem interesting?

Consider the following problems:

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.
2. Scheduling Given n rooms and when they are free, and given m people who are requesting them for certain timeslots, can you accommodates all of them? Studied since the 1880's.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.
2. Scheduling Given n rooms and when they are free, and given m people who are requesting them for certain timeslots, can you accommodates all of them? Studied since the 1880's.
The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) $\leftrightarrow($ SCHED is in P$)$.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.
2. Scheduling Given n rooms and when they are free, and given m people who are requesting them for certain timeslots, can you accommodates all of them? Studied since the 1880's.
The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.
2. Scheduling Given n rooms and when they are free, and given m people who are requesting them for certain timeslots, can you accommodates all of them? Studied since the 1880's.
The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

- The complexity of 3-SAT is important since it relates to the complexity of many other problems.

Is this problem interesting?

Consider the following problems:

1. Traveling Salesperson Problem (TSP) Given n cities and how much it costs to go from any city to an city, determine cheapest way to visit all cities. Studied since the 1930's.
2. Scheduling Given n rooms and when they are free, and given m people who are requesting them for certain timeslots, can you accommodates all of them? Studied since the 1880's.
The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

- The complexity of 3-SAT is important since it relates to the complexity of many other problems.
- Many of the problems 3-SAT is equivalent to have been worked on for 90 or more years; hence, it is unlikely they are in P . Hence it is unlikely that 3-SAT is in P .

Proper Terminology and What Do People In the Know Think?

The problems SAT, TSP, and SCHED are three examples of problems in NP, which we are not going to define.

Proper Terminology and What Do People In the Know Think?

The problems SAT, TSP, and SCHED are three examples of problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does $\mathbf{P}=N P$?

Proper Terminology and What Do People In the Know Think?

The problems SAT, TSP, and SCHED are three examples of problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does $\mathbf{P}=\mathbf{N P}$?
What does the Theory community think? Someone actually did a poll and discovered that 88% of the theorists polled think $P \neq N P$ (so SAT $\notin \mathrm{P}$).
If you want to see the poll, here is the link:

Proper Terminology and What Do People In the Know Think?

The problems SAT, TSP, and SCHED are three examples of problems in NP, which we are not going to define.

The question of SAT in P is often phrased as Does $\mathbf{P}=N P ?$
What does the Theory community think? Someone actually did a poll and discovered that 88% of the theorists polled think $\mathrm{P} \neq \mathrm{NP}$ (so SAT $\notin \mathrm{P}$).
If you want to see the poll, here is the link:
http://www.cs.umd.edu/~gasarch/papers/poll3.pdf

Its not all Bad News I

Scenario Your boss wants you to solve the TSP problem. You know that finding the optimal solution is likely not easy to do. So you know to look for an approximation. Perhaps something that is at worst twice optimal.

Its not all Bad News I

Scenario Your boss wants you to solve the TSP problem. You know that finding the optimal solution is likely not easy to do. So you know to look for an approximation. Perhaps something that is at worst twice optimal.

More generally, if you know a problem is equivalent to SAT then you know that you should not look for an optimal poly time solutions. There are many other options to try.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!
Warning My 6-year old great nephew Jase is already working on it. On his own he wrote down on a paper plate:

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!
Warning My 6-year old great nephew Jase is already working on it. On his own he wrote down on a paper plate:
$2+2=4$
$4+4=8$
$8+8=16$
$16+16=32$
$32+32=64$
$64+64=128$
$128+128=256$

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!
Warning My 6-year old great nephew Jase is already working on it. On his own he wrote down on a paper plate:
$2+2=4$
$4+4=8$
$8+8=16$
$16+16=32$
$32+32=64$
$64+64=128$
$128+128=256$
He then ran out of room to get some cake.

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!
Warning My 6-year old great nephew Jase is already working on it. On his own he wrote down on a paper plate:
$2+2=4$
$4+4=8$
$8+8=16$
$16+16=32$
$32+32=64$
$64+64=128$
$128+128=256$
He then ran out of room to get some cake.
His grandmother (my wife's sister) told me

Its not all Bad News II

In the year 2000 the Clay Math Institute set forth 7 mathematics problems that, if solved, they will give the solver $\$ 1,000,000$.
Resolving P vs NP is one of them. Go to it!
Warning My 6-year old great nephew Jase is already working on it. On his own he wrote down on a paper plate:
$2+2=4$
$4+4=8$
$8+8=16$
$16+16=32$
$32+32=64$
$64+64=128$
$128+128=256$
He then ran out of room to get some cake.
His grandmother (my wife's sister) told me
Jace can go to 8196, which is further than I can go.

