START

RECORDING

Sets & Quantifiers

CMSC250

What is a set?

- A set is a collection of **distinct** objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.

What is a set?

S

• х

- A set is a collection of **distinct** objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

What is a set?

S

• х

- A set is a collection of **distinct** objects.
- We use the notation $x \in S$ to say that S contains x.
- We'd like to know if $x \in S$ fast!
- Unless explicitly specified otherwise, sets are unordered.
- Given the last two requirements, what's the best possible data structure to implement a set in memory?

Elementary number sets

- \mathbb{N} : the **natural** numbers
 - $\mathbb{N} = \{0, 1, 2, 3,\}$. In our class, $0 \in \mathbb{N}!$
- \mathbb{Z} : the **integers**
 - $\mathbb{Z} = \{\dots 3, -2, -1, 0, 1, 2, 3, \dots\}$
- \mathbb{Q} : the **rationals**
 - $\mathbb{Q} = \{\frac{a}{b}, (a \in \mathbb{Z}) \land (b \in \mathbb{Z}) \land (b \neq 0)\}$
 - Any number that can be written as a ratio of integers!
- \mathbb{R} : the reals
 - This will typically be our "upper limit" in 250.
 - That is, we don't usually care about C, the set of complex numbers

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}
0				
-1				
1/2				
-1/2				
0.333333				
0.3333333/0.11111111				
π				
i , such that $i^2 = -1$				

Venn Diagrams

Venn Diagrams

- *U* is the *Universal Domain*: a set that we imagine holds every *conceivable* element.
- When talking about sets of numbers, U is usually \mathbb{R} , the reals.

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:

• $(\exists x \in \mathbb{R}) [8x = 1]$ True

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
- Is there a domain *D* where $(\exists n \in D)[n^2 = -1]$ is true?

- The symbol **3** (*LaTeX:* *exists*) is read "There exists".
- Examples:
 - $(\exists x \in \mathbb{R}) [8x = 1]$ True
 - $(\exists n \in \mathbb{Z})[n^2 = -1]$ False
- Is there a domain *D* where $(\exists n \in D)[n^2 = -1]$ is true?

- The symbol ∀ (LaTeX: \forall) is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$

- The symbol ∀ (LaTeX: \forall) is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True

- The symbol ∀ is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True
 - $(\forall n \in \mathbb{Z}) [n^2 \ge 0]$

- The symbol ∀ is read "for all".
- Examples:
 - $(\forall x \in \mathbb{N}) [((x > 2) \land (x \text{ is prime})) \Rightarrow (x \text{ is odd})]$ True
 - $(\forall n \in \mathbb{Z}) [n^2 \ge 0]$ True

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x \text{ has perfect attendance so far!}]$

- Let D be the set of all students in this class who are over 8 feet tall.
- $(\forall x \in D)[x \text{ has perfect attendance so far!}]$

- If disagree, need to find $x \in D$ who missed a class
- Called vacuously true!

• $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$

• $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$ True, $x = \frac{4}{5}, y = \frac{8}{5}$

- $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N})[x + 2y = 3x + y = 4]$ False
- $(\exists x \in \mathbb{Q})(\exists y \in \mathbb{Q})[x + 2y = 3x + y = 4]$ True, $x = \frac{4}{5}, y = \frac{8}{5}$
- Common abbreviation: $(\exists x, y \in D)[...]$
- Generally: $(\exists x_1, x_2, ..., x_n \in D)[...]$

Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$
 - $(\exists x \in \mathbb{N}) (\forall y \in \mathbb{N}) [x < y]$

Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 - $(\exists x \in \mathbb{N}) (\forall y \in \mathbb{N}) [x < y]$
Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 - $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$ False (\mathbb{N} bounded from below)

Alternating nested quantifiers

- Notice the differences between the following:
 - $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})[x < y]$ True (\mathbb{N} unbounded from above)
 - $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})[x < y]$ False (\mathbb{N} bounded from below)
- WHEN QUANTIFIERS ARE DIFFERENT, THEIR ORDER MATTERS!!!!!!

Statement	True	False
$(\exists n \in \mathbb{N})[n+n=0]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc	\bigcirc
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	\bigcirc
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc	\bigcirc	
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	
$(\exists x, y \in \mathbb{Z})[x+y=1]$	0	\bigcirc	
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	0	0	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	0	0	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	0	0	
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc	\bigcirc	
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc	
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		0	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$	\bigcirc	\bigcirc	
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	0	
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$		\bigcirc	x = 0, y = 1 or x = -1, y = 2, or
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc	\bigcirc	-
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		\bigcirc	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$		\bigcirc	x = 0, y = 1 or x = -1, y = 2, or
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc		$x^2 + x + 1 = 0$ has no real solutions
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc	\bigcirc	
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	\bigcirc	_
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	\bigcirc	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		0	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$		\bigcirc	x = 0, y = 1 or x = -1, y = 2, or
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc		$x^2 + x + 1 = 0$ has no real solutions
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc		Think of graph of $f(x) = x^2$
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$	\bigcirc	\bigcirc	
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	\bigcirc	0	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		0	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$		0	x = 0, y = 1 or x = -1, y = 2, or
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc		$x^2 + x + 1 = 0$ has no real solutions
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc		Think of graph of $f(x) = x^2$
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$		\bigcirc	Think of graph of $f(x) = x^3$
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$	0	0	

Statement	True	False	
$(\exists n \in \mathbb{N})[n+n=0]$		0	n = 0
$(\exists n \in \mathbb{N})[n+n=1]$	\bigcirc		$2n = 1 \Rightarrow n = \frac{1}{2} \notin \mathbb{N}$
$(\exists n \in \mathbb{Z})[n+n=1]$	\bigcirc		Similarly, $\frac{1}{2} \notin \mathbb{Z}$
$(\exists x, y \in \mathbb{Z})[x+y=1]$		0	x = 0, y = 1 or x = -1, y = 2, or
$(\exists x \in \mathbb{R})[x(x+1) = -1]$	\bigcirc		$x^2 + x + 1 = 0$ has no real solutions
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^2 < y^2 < z^2)]$	\bigcirc		Think of graph of $f(x) = x^2$
$(\forall x, y, z \in \mathbb{R})[((x < y < z) \Rightarrow (x^3 < y^3 < z^3)]$		\bigcirc	Think of graph of $f(x) = x^3$
$(\forall x, y \in \mathbb{N}) (\exists z \in \mathbb{Q}) [(x < y) \Rightarrow (x < z < y)]$		0	E.g: arithmetic mean

Give infinite sets D such that (∀x ∈ D)(∃y ∈ D)[x < y]
1. Is true

• Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$

1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true $(D = \mathbb{N}, \text{ select } y = x + 1)$
 - 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)
- Do the same thing for

 $(\forall x \in D)[x \leq 1] \land (\forall x \in D)(\exists y \in D)[x < y]$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true ($D = \mathbb{N}$, select y = x + 1)
 - 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)
- Do the same thing for

 $(\forall x \in D)[x \le 1] \land (\forall x \in D)(\exists y \in D)[x < y]$

1. True for $D = (-\infty, 1)$

- Give infinite sets D such that $(\forall x \in D)(\exists y \in D)[x < y]$
 - 1. Is true ($D = \mathbb{N}$, select y = x + 1)
 - 2. Is false ($D = \mathbb{Z}^{\leq 0}$, counter-example is 0)
- Do the same thing for

 $(\forall x \in D)[x \leq 1] \land (\forall x \in D)(\exists y \in D)[x < y]$

- 1. True for $D = (-\infty, 1)$
- 2. False for $D = (-\infty, 1]$ (!)

Subset

• We say that A is a subset of $B (A \subseteq B)$ iff

 $(\forall x \in A)[x \in B]$ В $(\forall x \in U)[(x \in A) \Rightarrow (x \in B)]$

Superset and proper subset/superset

- We say that B is a **superset** of $A (B \supseteq A)$ iff $A \subseteq B$.
- We say that A is a **proper subset** of B ($A \subset B$) iff ($A \subseteq B$) \land ($A \neq B$) \land ($A \neq B$).
- We say that B is a proper superset of $A (B \supset A)$ iff $A \subset B$

Union

$A \cup B = \{ (x \in A) \lor (x \in B) \}$

Union

$A \cup B = \{ (x \in A) \lor (x \in B) \}$

Connection between union and logical disjunction!

Intersection

$A \cap B = \{ (x \in A) \land (x \in B) \}$

Absolute complement

$A^{c} = \{ (x \notin A) \} = \{ (x \in U) \land (\sim (x \in A)) \}$

Absolute complement

 $A^{c} = \{ (x \notin A) \} = \{ (x \in U) \land (\sim (x \in A)) \}$

Connection between absolute complement and logical negation!

Absolute complement

 $(A^{c}) = \{ (x \notin A) \} = \{ (x \in U) \land (\sim (x \in A)) \}$

Some use A'. They are Wrong, we are right.

Connection between

absolute complement and logical negation!

Relative Complement

 $A - B = \{ (x \in A) \land (x \notin B) \}$

Relative Complement

$$A - B = \{(x \in A) \land (x \notin B)\}$$

Some use $A \setminus B$. They are wrong, we are right!

1.
$$1 \in \{-2, 0, 1, 3\}$$

1.
$$1 \in \{-2, 0, 1, 3\}$$
 T
2. $1 \in \{-2, 0, \{1\}, 3\}$

1.
$$1 \in \{-2, 0, 1, 3\}$$
 T
2. $1 \in \{-2, 0, \{1\}, 3\}$ F
3. $1 \subseteq \{-2, 0, \{1\}, 3\}$

1.
$$1 \in \{-2, 0, 1, 3\}$$
 T

- 2. $1 \in \{-2, 0, \{1\}, 3\}$ F
- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$

1.
$$1 \in \{-2, 0, 1, 3\}$$
 T

2.
$$1 \in \{-2, 0, \{1\}, 3\}$$
 F

- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ F
- 5. $\{1\} \in \{-2, 0, \{1\}, 3\}$

- *1.* $1 \in \{-2, 0, 1, 3\}$ T
- 2. $1 \in \{-2, 0, \{1\}, 3\}$ F
- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ F
- 5. $\{1\} \in \{-2, 0, \{1\}, 3\}$ T
- 6. $\{1\} \subseteq \{-2, 0, 1, 3\}$

- *1.* $1 \in \{-2, 0, 1, 3\}$ T
- 2. $1 \in \{-2, 0, \{1\}, 3\}$ F
- 3. $1 \subseteq \{-2, 0, \{1\}, 3\}$ F, in fact, not even mathematically correct syntax
- 4. $\{1\} \subseteq \{-2, 0, \{1\}, 3\}$ F
- 5. $\{1\} \in \{-2, 0, \{1\}, 3\}$ T
- 6. $\{1\} \subseteq \{-2, 0, 1, 3\}$
- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

1. $\emptyset \subseteq \mathbb{N}$

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

1. $\emptyset \subseteq \mathbb{N} \top$ 2. $\emptyset \subseteq A$ for any set A

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

- 1. $\phi \subseteq \mathbb{N} \mathsf{T}$
- *2.* $\emptyset \subseteq A$ for **any set** $A \top$
- *3.* $\emptyset \subset A$ for **any set** $A \not\models$
- 4. $\emptyset \subseteq \emptyset$

- The empty set, denoted either Ø or { }, is the unique set with no elements.
 - Uniqueness can be proven, through a proof by contradiction!

The powerset

- Given a set A, the powerset $\mathcal{P}(A)$ is the set of all subsets of A.
 - $\mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
 - $\mathcal{P}(\{0, 1, 2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{1, 2\}, \{0, 2\}, \{0, 1, 2\}\}$
 - Evens, Odds, Primes, Squares
 - And lots more...

Facts about the powerset

- The following are **facts** about the powerset:
 - Since $\emptyset \subseteq A$ for all sets A, $\emptyset \in \mathcal{P}(A)$ for all sets A
 - Since $A \subseteq A$ for all sets $A, A \in \mathcal{P}(A)$ for all sets A

• Let
$$A = \{1, 2, ..., n\}$$

• Then, |*P*(*A*)|

$$\approx n \cdot logn$$
 $= n^2$ $= 2^n$ $= n!$

• Let
$$A = \{1, 2, ..., n\}$$

• Then, |*P*(*A*)|

$$\approx n \cdot logn$$

$$= n^{2}$$

$$=2^n$$

$$= n!$$

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(P(\{1\})) =$

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(P(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}$
- $P(\emptyset) =$

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(P(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}$
- $P(\emptyset) = \{\emptyset\}$
- $P(\{\emptyset\}) =$

- $P(\{1\}) = \{\emptyset, \{1\}\}$
- $P(P(\{1\})) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\}$
- $P(\emptyset) = \{\emptyset\}$
- $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

STOP RECORDING