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What is a set?

• A set is a collection of distinct objects.
• We use the notation 𝑥𝑥 ∈ 𝑆𝑆 to say that S contains x. 
• We’d like to know if 𝑥𝑥 ∈ 𝑆𝑆 fast!
• Unless explicitly specified otherwise, sets are unordered.
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• We use the notation 𝑥𝑥 ∈ 𝑆𝑆 to say that S contains x. 
• We’d like to know if 𝑥𝑥 ∈ 𝑆𝑆 fast!
• Unless explicitly specified otherwise, sets are unordered.
• Given the last two requirements, what’s the best possible
data structure to implement a set in memory?
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(what?)



What is a set?

• A set is a collection of distinct objects.
• We use the notation 𝑥𝑥 ∈ 𝑆𝑆 to say that S contains x. 
• We’d like to know if 𝑥𝑥 ∈ 𝑆𝑆 fast!
• Unless explicitly specified otherwise, sets are unordered.
• Given the last two requirements, what’s the best possible
data structure to implement a set in memory?

S

x

Doubly Linked List Binary Tree Stack Something else
(what?)

Hash table!



Elementary number sets

• ℕ: the natural numbers
• ℕ = {𝟎𝟎, 1,2,3, … . }. In our class, 0 ∈ ℕ!

• ℤ: the integers
• ℤ = …− 3,−2,−1, 0, 1, 2, 3, …

• ℚ: the rationals
• ℚ = {𝑎𝑎

𝑏𝑏
, (𝑎𝑎 ∈ ℤ) ∧ (𝑏𝑏 ∈ ℤ) ∧ (𝑏𝑏 ≠ 0)

• Any number that can be written as a ratio of integers!
• ℝ: the reals

• This will typically be our “upper limit” in 250.
• That is, we don’t usually care about ℂ, the set of complex numbers
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Fill those in!

Not even 
a real 
number!
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• 𝑈𝑈 is the Universal Domain: a set that we 
imagine holds every conceivable element.

• When talking about sets of numbers, 𝑈𝑈 is 
usually ℝ, the reals.



“There exists” (∃)

• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:

• (∃𝑥𝑥 ∈ ℝ) [8𝑥𝑥 = 1]
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“There exists” (∃)

• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:

• (∃𝑥𝑥 ∈ ℝ) [8𝑥𝑥 = 1] True
• ∃𝑛𝑛 ∈ ℤ [𝑛𝑛2 = −1]
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• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:

• (∃𝑥𝑥 ∈ ℝ) [8𝑥𝑥 = 1] True
• ∃𝑛𝑛 ∈ ℤ [𝑛𝑛2 = −1] False



“There exists” (∃)

• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:

• (∃𝑥𝑥 ∈ ℝ) [8𝑥𝑥 = 1] True
• ∃𝑛𝑛 ∈ ℤ [𝑛𝑛2 = −1] False

• Is there a domain D where ∃𝑛𝑛 ∈ 𝐷𝐷 [𝑛𝑛2 = −1] is true?

Yes No Something 
else



“There exists” (∃)

• The symbol ∃ (LaTeX: \exists) is read “There exists”.
• Examples:

• (∃𝑥𝑥 ∈ ℝ) [8𝑥𝑥 = 1] True
• ∃𝑛𝑛 ∈ ℤ [𝑛𝑛2 = −1] False

• Is there a domain D where ∃𝑛𝑛 ∈ 𝐷𝐷 [𝑛𝑛2 = −1] is true?

Yes No Something 
else

The 
complex 
numbers ℂ



“For all” (∀)

• The symbol ∀ (LaTeX: \forall) is read “for all”.
• Examples:

• (∀𝑥𝑥 ∈ ℕ) [( 𝑥𝑥 > 2 ∧ 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 ) ⇒ (𝑥𝑥 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜)]
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“For all” (∀)

• The symbol ∀ is read “for all”.
• Examples:

• (∀𝑥𝑥 ∈ ℕ) [( 𝑥𝑥 > 2 ∧ 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 ) ⇒ (𝑥𝑥 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜)]
True

• ∀𝑛𝑛 ∈ ℤ [𝑛𝑛2 ≥ 0]



“For all” (∀)

• The symbol ∀ is read “for all”.
• Examples:

• (∀𝑥𝑥 ∈ ℕ) [( 𝑥𝑥 > 2 ∧ 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 ) ⇒ (𝑥𝑥 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜)]
True

• ∀𝑛𝑛 ∈ ℤ [𝑛𝑛2 ≥ 0]
True



“For all” (∀)

• Let D be the set of all students in this class who are over 8 feet tall.
• ∀𝑥𝑥 ∈ 𝐷𝐷 [𝑥𝑥 ℎ𝑎𝑎𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑜𝑜 𝑝𝑝𝑎𝑎𝑝𝑝!]

True False Something 
else



“For all” (∀)

• Let D be the set of all students in this class who are over 8 feet tall.
• ∀𝑥𝑥 ∈ 𝐷𝐷 [𝑥𝑥 ℎ𝑎𝑎𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑜𝑜𝑎𝑎𝑛𝑛𝑝𝑝𝑝𝑝 𝑖𝑖𝑜𝑜 𝑝𝑝𝑎𝑎𝑝𝑝!]

• If disagree, need to find 𝑥𝑥 ∈ 𝐷𝐷 who missed a class
• Called vacuously true!

True False Something 
else



Nesting quantifiers

• ∃𝑥𝑥 ∈ ℕ ∃𝑦𝑦 ∈ ℕ [𝑥𝑥 + 2𝑦𝑦 = 3𝑥𝑥 + 𝑦𝑦 = 4]
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True, 𝑥𝑥 = 4
5

,𝑦𝑦 = 8
5



Nesting quantifiers

• ∃𝑥𝑥 ∈ ℕ ∃𝑦𝑦 ∈ ℕ 𝑥𝑥 + 2𝑦𝑦 = 3𝑥𝑥 + 𝑦𝑦 = 4 False
• ∃𝑥𝑥 ∈ ℚ ∃𝑦𝑦 ∈ ℚ 𝑥𝑥 + 2𝑦𝑦 = 3𝑥𝑥 + 𝑦𝑦 = 4

True, 𝑥𝑥 = 4
5

,𝑦𝑦 = 8
5

• Common abbreviation: ∃𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷 [… ]
• Generally: ∃𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ∈ 𝐷𝐷 [… ]



Alternating nested quantifiers

• Notice the differences between the following:
• ∀𝑥𝑥 ∈ ℕ ∃𝑦𝑦 ∈ ℕ [𝑥𝑥 < 𝑦𝑦]
• ∃𝑥𝑥 ∈ ℕ ∀𝑦𝑦 ∈ ℕ [𝑥𝑥 < 𝑦𝑦]
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Alternating nested quantifiers

• Notice the differences between the following:
• ∀𝑥𝑥 ∈ ℕ ∃𝑦𝑦 ∈ ℕ [𝑥𝑥 < 𝑦𝑦] True (ℕ unbounded from above)
• ∃𝑥𝑥 ∈ ℕ ∀𝑦𝑦 ∈ ℕ [𝑥𝑥 < 𝑦𝑦] False (ℕ bounded from below)

•WHEN QUANTIFIERS ARE DIFFERENT, THEIR 
ORDER MATTERS!!!!!!!
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𝑛𝑛 = 0
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𝑛𝑛 = 0

2𝑛𝑛 = 1 ⇒ 𝑛𝑛 =
1
2 ∉ ℕ
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Similarly, 1
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2𝑛𝑛 = 1 ⇒ 𝑛𝑛 =
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Similarly, 1
2
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𝒙𝒙 = 𝟎𝟎,𝒚𝒚 = 𝟏𝟏 or 
𝒙𝒙 = −𝟏𝟏,𝒚𝒚 = 𝟐𝟐, or…
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𝒙𝒙 = −𝟏𝟏,𝒚𝒚 = 𝟐𝟐, or…

𝑥𝑥2 + 𝑥𝑥 + 1 = 0 has no 
real solutions
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Think of graph of 𝑝𝑝 𝑥𝑥 = 𝑥𝑥2
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2
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𝒙𝒙 = 𝟎𝟎,𝒚𝒚 = 𝟏𝟏 or 
𝒙𝒙 = −𝟏𝟏,𝒚𝒚 = 𝟐𝟐, or…

𝑥𝑥2 + 𝑥𝑥 + 1 = 0 has no 
real solutions

Think of graph of 𝑝𝑝 𝑥𝑥 = 𝑥𝑥2

Think of graph of 𝑝𝑝 𝑥𝑥 = 𝑥𝑥3
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1
2 ∉ ℕ

Similarly, 1
2
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𝒙𝒙 = 𝟎𝟎,𝒚𝒚 = 𝟏𝟏 or 
𝒙𝒙 = −𝟏𝟏,𝒚𝒚 = 𝟐𝟐, or…

𝑥𝑥2 + 𝑥𝑥 + 1 = 0 has no 
real solutions

Think of graph of 𝑝𝑝 𝑥𝑥 = 𝑥𝑥2

Think of graph of 𝑝𝑝 𝑥𝑥 = 𝑥𝑥3

E.g: arithmetic mean



Finding domains

• Give infinite sets D such that ∀𝑥𝑥 ∈ 𝐷𝐷 ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]
1. Is true
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• Give infinite sets D such that ∀𝑥𝑥 ∈ 𝐷𝐷 ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]
1. Is true (𝐷𝐷 = ℕ, select 𝑦𝑦 = 𝑥𝑥 + 1)
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2. Is false
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1. Is true (𝐷𝐷 = ℕ, select 𝑦𝑦 = 𝑥𝑥 + 1)
2. Is false (𝐷𝐷 = ℤ≤0, counter-example is 0)



Finding domains

• Give infinite sets D such that ∀𝑥𝑥 ∈ 𝐷𝐷 ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]
1. Is true (𝐷𝐷 = ℕ, select 𝑦𝑦 = 𝑥𝑥 + 1)
2. Is false (𝐷𝐷 = ℤ≤0, counter-example is 0)

• Do the same thing for

∀𝑥𝑥 ∈ 𝐷𝐷 [𝑥𝑥 ≤ 1] ∧ (∀𝑥𝑥 ∈ 𝐷𝐷) ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]



Finding domains

• Give infinite sets D such that ∀𝑥𝑥 ∈ 𝐷𝐷 ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]
1. Is true (𝐷𝐷 = ℕ, select 𝑦𝑦 = 𝑥𝑥 + 1)
2. Is false (𝐷𝐷 = ℤ≤0, counter-example is 0)

• Do the same thing for

∀𝑥𝑥 ∈ 𝐷𝐷 [𝑥𝑥 ≤ 1] ∧ (∀𝑥𝑥 ∈ 𝐷𝐷) ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]

1. True for 𝐷𝐷 = (−∞, 1)



Finding domains

• Give infinite sets D such that ∀𝑥𝑥 ∈ 𝐷𝐷 ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]
1. Is true (𝐷𝐷 = ℕ, select 𝑦𝑦 = 𝑥𝑥 + 1)
2. Is false (𝐷𝐷 = ℤ≤0, counter-example is 0)

• Do the same thing for

∀𝑥𝑥 ∈ 𝐷𝐷 [𝑥𝑥 ≤ 1] ∧ (∀𝑥𝑥 ∈ 𝐷𝐷) ∃𝑦𝑦 ∈ 𝐷𝐷 [𝑥𝑥 < 𝑦𝑦]

1. True for 𝐷𝐷 = (−∞, 1)
2. False for 𝐷𝐷 = −∞, 1 (!)



Subset

• We say that 𝐴𝐴 is a subset of 𝐵𝐵 (𝐴𝐴 ⊆ 𝐵𝐵) iff

∀𝑥𝑥 ∈ 𝐴𝐴 [𝑥𝑥 ∈ 𝐵𝐵]
A

U
B

⇔
∀𝑥𝑥 ∈ 𝑈𝑈 [ 𝑥𝑥 ∈ 𝐴𝐴 ⇒ 𝑥𝑥 ∈ 𝐵𝐵 ]



Superset and proper subset/superset

• We say that 𝐵𝐵 is a superset of 𝐴𝐴 (𝐵𝐵 ⊇ 𝐴𝐴) iff 𝐴𝐴 ⊆ 𝐵𝐵.
• We say that 𝐴𝐴 is a proper subset of 𝐵𝐵 (𝐴𝐴 ⊂ 𝐵𝐵) iff 𝐴𝐴 ⊆ 𝐵𝐵 ∧ 𝐴𝐴 ≠ 𝐵𝐵 ∧

(A ≠ ∅).
• We say that 𝐵𝐵 is a proper superset of 𝐴𝐴 (𝐵𝐵 ⊃ 𝐴𝐴) iff 𝐴𝐴 ⊂ 𝐵𝐵

A

U
B



Union

𝐴𝐴 ∪ 𝐵𝐵 = { 𝑥𝑥 ∈ 𝐴𝐴 ∨ 𝑥𝑥 ∈ 𝐵𝐵 }

BA

U



Union

𝐴𝐴 ∪ 𝐵𝐵 = { 𝑥𝑥 ∈ 𝐴𝐴 ∨ 𝑥𝑥 ∈ 𝐵𝐵 }

BA

U

Connection between union 
and logical disjunction!



Intersection

𝐴𝐴 ∩ 𝐵𝐵 = { 𝑥𝑥 ∈ 𝐴𝐴 ∧ 𝑥𝑥 ∈ 𝐵𝐵 }

BA

U



Absolute complement

𝐴𝐴𝑐𝑐 = 𝑥𝑥 ∉ 𝐴𝐴 = 𝑥𝑥 ∈ 𝑈𝑈 ∧ (~ 𝑥𝑥 ∈ 𝐴𝐴 )

A

U



Absolute complement

𝐴𝐴𝑐𝑐 = 𝑥𝑥 ∉ 𝐴𝐴 = 𝑥𝑥 ∈ 𝑈𝑈 ∧ (~ 𝑥𝑥 ∈ 𝐴𝐴 )

A

U

Connection between 
absolute complement and 
logical negation!



Absolute complement

𝐴𝐴𝑐𝑐 = 𝑥𝑥 ∉ 𝐴𝐴 = 𝑥𝑥 ∈ 𝑈𝑈 ∧ (~ 𝑥𝑥 ∈ 𝐴𝐴 )

A

U

Connection between 
absolute complement and 
logical negation!

S𝐨𝐨𝐨𝐨𝐨𝐨 𝐮𝐮𝐮𝐮𝐨𝐨 𝑨𝑨𝑨. They are Wrong, we are 
right. 



Relative Complement

𝐴𝐴 − 𝐵𝐵 = { 𝑥𝑥 ∈ 𝐴𝐴 ∧ (𝑥𝑥 ∉ 𝐵𝐵)}

BA

U



Relative Complement

𝐴𝐴 − 𝐵𝐵 = { 𝑥𝑥 ∈ 𝐴𝐴 ∧ (𝑥𝑥 ∉ 𝐵𝐵)}

BA

U

Some use 𝑨𝑨 \ 𝑩𝑩. They are wrong, we are right!



Careful about membership and subset!

• Be careful to distinguish between members of a set and subsets of a 
set…

True False



Careful about membership and subset!

• Be careful to distinguish between members of a set and subsets of a 
set…

1. 1 ∈ {−2, 0, 1, 3}

True False
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• Uniqueness can be proven, through a proof by contradiction!

1. ∅ ⊆ ℕ T
2. ∅ ⊆ 𝐴𝐴 for any set A T
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The powerset

• Given a set A, the powerset 𝒫𝒫(𝐴𝐴) is the set of all subsets 
of A.

• 𝒫𝒫({0, 1}) = {∅, {0}, {1}, {0, 1}}
• 𝒫𝒫({0, 1, 2}) = {∅, {0}, {1}, {2}, {0,1}, {1, 2}, {0, 2 }, {0, 1, 2}}
• Evens, Odds, Primes, Squares

• And lots more…



Facts about the powerset

• The following are facts about the powerset:
• Since ∅ ⊆ A for all sets A, ∅ ∈ 𝒫𝒫(A) for all sets A
• Since 𝐴𝐴 ⊆ A for all sets A, 𝐴𝐴 ∈ 𝒫𝒫(A) for all sets A
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• 𝑃𝑃({1}) = {∅, {1}}
• 𝑃𝑃 𝑃𝑃 {1 ) = {∅, {∅}, {{1}}, {∅, {1}}}
• 𝑃𝑃 ∅ = {∅}
• 𝑃𝑃({∅}) = {∅, {∅}}
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