Duplicator Spoiler Games

a < b.

$$a < b$$
.
 $L_a = \{1 < 2 < \dots < a\}$

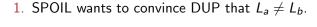
$$a < b$$
.
 $L_a = \{1 < 2 < \dots < a\}$
 $L_b = \{1 < 2 < \dots < b\}$

$$a < b$$
.
$$L_a = \{1 < 2 < \cdots < a\}$$

$$L_b = \{1 < 2 < \cdots < b\}$$
 DUP is **cra-cra**! He thinks L_a and L_b are the same!

$$a < b$$
.
$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$
 DUP is **cra-cra**! He thinks L_a and L_b are the same!



$$a < b$$
.
$$L_a = \{1 < 2 < \dots < a\}$$

$$L_b = \{1 < 2 < \dots < b\}$$
 DUP is **cra-cra**! He thinks L_a and L_b are the same!

- 1. SPOIL wants to convince DUP that $L_a \neq L_b$.
- 2. DUP wants to resist the attempt.

$$a < b$$
.
 $L_a = \{1 < 2 < \dots < a\}$
 $L_b = \{1 < 2 < \dots < b\}$

DUP is cra-cra! He thinks L_a and L_b are the same!

- 1. SPOIL wants to convince DUP that $L_a \neq L_b$.
- 2. DUP wants to resist the attempt.

We will call SPOIL S and DUP D to fit on slides.

Parameter *k* The number of rounds.

1. **S** pick number in one orderings.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.
- 4. This process creates a map between k points of L_a and k points of L_b .

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.
- 4. This process creates a map between k points of L_a and k points of L_b .
- 5. If this map is order preserving D wins, else S wins.

Parameter k The number of rounds.

- 1. S pick number in one orderings.
- D pick number in OTHER ORDERING. D will try to pick a point that most looks like the other point.
- 3. Repeat for k rounds.
- 4. This process creates a map between k points of L_a and k points of L_b .
- 5. If this map is order preserving D wins, else S wins.

Bill plays a student $(L_3, L_4, 2)$, $(L_3, L_4, 3)$

Since $L_a \neq L_b$, S will win if k is large enough.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly. We want k such that

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly. We want k such that

1. S beats D in the (L_a, L_b, k) game.

Since $L_a \neq L_b$, S will win if k is large enough. We want to know the smallest k. We assume both players play perfectly. We want k such that

- 1. S beats D in the (L_a, L_b, k) game.
- 2. D beats S in the $(L_a, L_b, k-1)$ game.

Try to determine:

Try to determine:

1. Who wins $(L_3, L_4, 2)$? (2 moves).

Try to determine:

- 1. Who wins $(L_3, L_4, 2)$? (2 moves).
- 2. Who wins $(L_8, L_{10}, 3)$? (3 moves)

Try to determine:

- 1. Who wins $(L_3, L_4, 2)$? (2 moves).
- 2. Who wins $(L_8, L_{10}, 3)$? (3 moves)
- 3. GENERALLY: Who wins (L_a, L_b, k) .

Can use any orderings L, L^{\prime}

Can use any orderings L, L'

1. \mathbb{N} and \mathbb{Q} are the usual orderings.

Can use any orderings L, L'

- 1. \mathbb{N} and \mathbb{Q} are the usual orderings.
- 2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.

Can use any orderings L, L'

- 1. \mathbb{N} and \mathbb{Q} are the usual orderings.
- 2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.
- 3. If L is an ordering then L^* is that ordering backwards.

Can use any orderings L, L'

- 1. \mathbb{N} and \mathbb{Q} are the usual orderings.
- 2. \mathbb{N}^* is the ordering $\cdots < 2 < 1 < 0$.
- 3. If L is an ordering then L^* is that ordering backwards.

Play a student $\mathbb N$ and $\mathbb Z$ with 1 move, 2 moves

In all problems we want a k such that condition holds.

1. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.

- 1. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- 2. D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.

- 1. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- 2. D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- 3. D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.

- 1. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- 2. D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- 3. D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- **4**. D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.

- 1. D wins $(\mathbb{N}, \mathbb{Z}, k-1)$, S wins $(\mathbb{N}, \mathbb{Z}, k)$.
- 2. D wins $(\mathbb{N}, \mathbb{Q}, k-1)$, S wins $(\mathbb{N}, \mathbb{Q}, k)$.
- 3. D wins $(\mathbb{Z}, \mathbb{Q}, k-1)$, S wins $(\mathbb{Z}, \mathbb{Q}, k)$.
- **4**. D wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k 1)$, S wins $(L_{10}, \mathbb{N} + \mathbb{N}^*, k)$.
- 5. D wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k 1)$, S wins $(\mathbb{N} + \mathbb{Z}, \mathbb{N}, k)$.

A Notion of L, L' being Similar

Let L and L' be two linear orderings.

A Notion of L, L' being Similar

Let L and L' be two linear orderings. **Def** If D wins the k-round DS-game on L, L' then L, L' are k-game equivalent (denoted $L \equiv_k^G L'$).

All sentences use the usual logic symbols and <.

All sentences use the usual logic symbols and <.

All sentences use the usual logic symbols and <.

example Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

All sentences use the usual logic symbols and <.

example Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

1.
$$\mathbb{Q} \models \phi$$

All sentences use the usual logic symbols and <.

example Let
$$\phi = (\forall x)(\forall y)(\exists z)[x < y \implies x < z < y]$$

- 1. $\mathbb{Q} \models \phi$
- 2. $\mathbb{N} \models \neg \phi$

If $\phi(\vec{x})$ has 0 quantifiers then $qd(\phi(\vec{x})) = 0$.

If $\phi(\vec{x})$ has 0 quantifiers then $\mathrm{qd}(\phi(\vec{x}))=0$. If $\alpha\in\{\wedge,\vee,\to\}$ then

If $\phi(\vec{x})$ has 0 quantifiers then $\mathrm{qd}(\phi(\vec{x}))=0$. If $\alpha\in\{\wedge,\vee,\to\}$ then $\mathrm{qd}(\phi_1(\vec{x})\ \alpha\ \phi_2(\vec{x}))=\max\{\mathrm{qd}(\phi_1(\vec{x}),\mathrm{qd}(\phi_2(\vec{x}))\}.$

If
$$\phi(\vec{x})$$
 has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x})) = 0$.
If $\alpha \in \{\land, \lor, \to\}$ then
$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$

If
$$\phi(\vec{x})$$
 has 0 quantifiers then $\operatorname{qd}(\phi(\vec{x})) = 0$.
If $\alpha \in \{\land, \lor, \to\}$ then
$$\operatorname{qd}(\phi_1(\vec{x}) \ \alpha \ \phi_2(\vec{x})) = \max\{\operatorname{qd}(\phi_1(\vec{x}), \operatorname{qd}(\phi_2(\vec{x}))\}.$$

$$\operatorname{qd}(\neg \phi(\vec{x})) = \operatorname{qd}(\phi(\vec{x})).$$
If $Q \in \{\exists, \forall\}$ then
$$\operatorname{qd}((Qx_1)[\phi(x_1, \dots, x_n)] = \operatorname{qd}(\phi_1(x_1, \dots, x_n)) + 1.$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$${\rm qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$$qd((\exists y)[x < y < z]) = 1 + 0 = 1.$$

 $qd(x < z \to (\exists y)[x < y < z]) = max\{0, 1\} = 1.$

$$(\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]$$

$${\rm qd}((\exists y)[x < y < z]) = 1 + 0 = 1.$$

$$qd(x < z \to (\exists y)[x < y < z]) = max\{0,1\} = 1.$$

$$\operatorname{qd}((\forall x)(\forall z)[x < z \to (\exists y)[x < y < z]]) = 2 + 1 = 3$$

Another Notion of L, L' **Similar**

Let L and L' be two linear orderings.

Another Notion of L, L' **Similar**

Let L and L' be two linear orderings. **Def** L and L' are k-truth-equiv $(L \equiv_k^T L')$

$$(\forall \phi, qd(\phi) \leq k)[L \models \phi \text{ iff } L' \models \phi.]$$

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

1.
$$L \equiv_k^T L'$$

Thm Let L, L' be any linear ordering and let $k \in \mathbb{N}$. The following are equivalent.

- 1. $L \equiv_k^T L'$
- 2. $L \equiv_k^G L'$

1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$). WILL DO ON WHITE BOARD.

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$). WILL DO ON WHITE BOARD.
- 3. Upshot: Questions about expressability become questions about games.

- 1. Density *cannot* be expressed with qd 2. (Proof: $\mathbb{Z} \equiv_2^G \mathbb{Q}$ so $\mathbb{Z} \equiv_2^T \mathbb{Q}$).
- 2. Well foundedness cannot be expressed in 1st order at all! (Proof: $(\forall n)[\mathbb{N} + \mathbb{Z} \equiv_n^G \mathbb{N}]$). WILL DO ON WHITE BOARD.
- 3. Upshot: Questions about expressability become questions about games.
- 4. Complexity: As Computer Scientists we think of complexity in terms of time or space (e.g., sorting n elements can be done in roughly n log n comparisons). But how do you measure complexity for concepts where time and space do not apply? One measure is quantifier depth. These games help us prove LOWER BOUNDS on quantifier depth!

Proving DUP Wins Rigorously

Notation

The game where the orders are L and L', and its for n moves, will be denoted

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$. IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n - 1)$.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$. IB n = 1. DUP clearly wins $(L_a, L_b; 1)$. IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n - 1)$. IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a . DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

> < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.

L_a and L_b

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- ightharpoonup < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- ightharpoonup > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$.

L_a and L_b

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- > < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$. Since $x \le 2^{n-1}$ and $a, b \ge 2^n$, $a-x-1 \ge 2^{n-1}$ and $b-x-1 \ge 2^{n-1}$.

L_a and L_b

Thm For all n, if $a, b \ge 2^n$ then DUP wins $(L_a, L_b; n)$.

IB n = 1. DUP clearly wins $(L_a, L_b; 1)$.

IH For all $a, b \ge 2^{n-1}$, DUP wins $(L_a, L_b; n-1)$.

IS We do 1 case: SP makes move $x \le 2^{n-1}$ in L_a .

DUP respond with x in L_b . DUP views game as 2 GAMES:

Key The game is now 2 games.

- > < x in both orders: $(L_{x-1}, L_{x-1}; n-1)$. SP will never play here.
- > x in both orders: $(L_{a-x}, L_{b-x}; n-1)$. Since $x \le 2^{n-1}$ and $a, b \ge 2^n$, $a-x-1 \ge 2^{n-1}$ and $b-x-1 \ge 2^{n-1}$. By IH DUP wins $(L_{a-x}, L_{b-x}; n-1)$.

1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.
- 2. We might use induction on those smaller boards.

- 1. After the 1st move x in in L and the counter-move x' in L', the game is now two boards,
 - 1.1 $L^{<x}$ and $L'^{<x'}$.
 - 1.2 $L^{>x}$ and $L'^{>x'}$.
- 2. We might use induction on those smaller boards.
- Might not need induction on the smaller boards if they are orderings we already proved things about.

$$\mathbb{N} + \mathbb{N}^*$$
 and L_a

Thm For all n, if $a \geq 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$.

$$\mathbb{N} + \mathbb{N}^*$$
 and L_a

Thm For all n, if $a \ge 2^n$, DUP wins $(\mathbb{N} + \mathbb{N}^*, L_a; n)$. Might make this a HW.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$. **IB** n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$. IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$. IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n - 1)$.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

$$(L_x, L_x; n-1)$$
 and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

 $(L_x, L_x; n-1)$ and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

2) SP plays x in $\mathbb Z$ part of $\mathbb N+\mathbb Z$ then DUP plays 2^n in $\mathbb N$. The 2 games are

Thm For all n, DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n)$.

IB n = 1. DUP clearly wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; 1)$.

IH DUP wins $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

1) SP plays x in either $\mathbb N$ or $\mathbb N$ -part of $\mathbb N+\mathbb Z$ then DUP counters with the same x in the other part. The 2 games are

$$(L_x, L_x; n-1)$$
 and $(\mathbb{N}, \mathbb{N} + \mathbb{Z}; n-1)$.

SP won't play on 1st board.

The 2nd board *DUP* wins by IH.

2) SP plays x in $\mathbb Z$ part of $\mathbb N+\mathbb Z$ then DUP plays 2^n in $\mathbb N$. The 2 games are

$$(\mathbb{N} + \mathbb{N}^*, L_{2^n}; n-1)$$
 and $(\mathbb{N}, \mathbb{N}; n-1)$.

SP won't play on 2nd board. DUP wins 1st board by prior thm.