True or False?

Is the following TRUE or FALSE:

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \rightarrow (\exists z)[x < z < y]]$$

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true?

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Counterexample: x = 1, y = 2.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Counterexample: x = 1, y = 2.

There is no $z \in \mathbb{N}$ such that 1 < z < 2.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Counterexample: x = 1, y = 2.

There is no $z \in \mathbb{N}$ such that 1 < z < 2.

2) If $D = \mathbb{Q}$ then is the statement is true?

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Counterexample: x = 1, y = 2.

There is no $z \in \mathbb{N}$ such that 1 < z < 2.

2) If $D = \mathbb{Q}$ then is the statement is true? Yes.

Is the following TRUE or FALSE:

$$(\forall x)(\forall y)[x < y \to (\exists z)[x < z < y]]$$

Answer This is a stupid question! Need to specify the Domain.

Better Questions Let D mean Domain.

1) If $D = \mathbb{N}$ then is the statement true? No.

Counterexample: x = 1, y = 2.

There is no $z \in \mathbb{N}$ such that 1 < z < 2.

2) If $D = \mathbb{Q}$ then is the statement is true? Yes. Take $z = \frac{x+y}{2}$.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Give a domain where this is T.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Give a domain where this is T. \mathbb{N} with x = 0.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Give a domain where this is T. \mathbb{N} with x = 0.

Give a domain where this is F.

Consider:

$$(\exists x)(\forall y \neq x)[y > x]$$

Give a domain where this is T. \mathbb{N} with x = 0.

Give a domain where this is F. \mathbb{Z} since, $\forall x, x - 1 < x$.

Expressing Math With Quantifiers

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers.

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers. Quantifiers range over \mathbb{Z} .

Expressing Properties of Numbers: EVEN

I want to say x is even. How to do that with quantifiers. Quantifiers range over \mathbb{Z} .

$$\mathrm{EVEN}(x) \equiv (\exists y)[x=2y]$$

Expressing Properties of Numbers: $\equiv 1 \pmod{5}$

I want to say that $x \equiv 1 \pmod 5$, which means that when we divide x by 5 we get a remainder of 1. Lets call this property ONEFIVE

Expressing Properties of Numbers: $\equiv 1 \pmod{5}$

I want to say that $x\equiv 1\pmod 5$, which means that when we divide x by 5 we get a remainder of 1. Lets call this property ONEFIVE

Quantifiers range over \mathbb{Z} .

Expressing Properties of Numbers: $\equiv 1 \pmod{5}$

I want to say that $x\equiv 1\pmod 5$, which means that when we divide x by 5 we get a remainder of 1. Lets call this property ONEFIVE

Quantifiers range over \mathbb{Z} .

$$ONEFIVE(x) \equiv (\exists y)[x = 5y + 1]$$

I want to say that $x \in \mathbb{N}$ is PRIME.

I want to say that $x \in \mathbb{N}$ is PRIME. Quantifiers range over \mathbb{N} .

I want to say that $x \in \mathbb{N}$ is PRIME. Quantifiers range over \mathbb{N} .

$$\mathrm{PRIME}(x) \equiv \big(x \neq \{0,1\}\big) \land \big(\forall y,z\big)\big[x = yz \rightarrow \big(y = 1\big) \lor \big(z = 1\big)\big]$$

I want to say that $x \in \mathbb{Z}$ is PRIME.

I want to say that $x \in \mathbb{Z}$ is PRIME. Quantifiers range over \mathbb{Z} .

I want to say that $x \in \mathbb{Z}$ is PRIME. Quantifiers range over \mathbb{Z} .

$$\mathrm{PRIME}(x) \equiv (x \neq \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Does this work? Discuss.

I want to say that $x \in \mathbb{Z}$ is PRIME. Quantifiers range over \mathbb{Z} .

$$\mathrm{PRIME}(x) \equiv (x \neq \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Does this work? Discuss.

$$-7 = -1 \times 7$$
 Its also $-7 \times -1 \times -1 \times 1$. So... not a prime?

I want to say that $x \in \mathbb{Z}$ is PRIME. Quantifiers range over \mathbb{Z} .

$$\mathrm{PRIME}(x) \equiv (x \neq \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Does this work? Discuss.

$$-7 = -1 \times 7$$
 Its also $-7 \times -1 \times -1 \times 1$. So... not a prime?

NAH, we want -7 to be a prime.

$$\mathrm{PRIME}(x) \equiv (x \notin \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

$$\mathrm{PRIME}(x) \equiv (x \notin \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Why did we make 1 an exception? Because $7 = 1 \times 7$.

$$\mathrm{PRIME}(x) \equiv \big(x \notin \{0,1\}\big) \land \big(\forall y,z\big)[x = yz \rightarrow \big(y = 1\big) \lor \big(z = 1\big)]$$

Why did we make 1 an exception? Because $7 = 1 \times 7$.

Should we make -1 an exception also?

$$\mathrm{PRIME}(x) \equiv \big(x \notin \{0,1\}\big) \land \big(\forall y,z\big) \big[x = yz \rightarrow \big(y = 1\big) \lor \big(z = 1\big)\big]$$

Why did we make 1 an exception? Because $7 = 1 \times 7$.

Should we make -1 an exception also? Yes.

$$\mathrm{PRIME}(x) \equiv (x \notin \{0,1\}) \land (\forall y,z)[x = yz \rightarrow (y = 1) \lor (z = 1)]$$

Why did we make 1 an exception? Because $7 = 1 \times 7$.

Should we make -1 an exception also? Yes.

$$\mathrm{PRIME}(x) \equiv (x \notin \{0,1,-1\}) \land (\forall y,z)[x = yz \rightarrow (y = \pm 1) \lor (z = \pm 1)]$$

Def The **Gaussian Integers** *G* are numbers of the form

$$\{a+bi:a,b\in\mathbb{Z}\}$$

Def The **Gaussian Integers** *G* are numbers of the form

$$\{a+bi: a,b\in\mathbb{Z}\}$$

We want to define PRIME in G. What will be the exceptional numbers? Why?

Def The **Gaussian Integers** *G* are numbers of the form

$$\{a+bi: a,b\in\mathbb{Z}\}$$

We want to define PRIME in G. What will be the exceptional numbers? Why?

Work in Groups

Def The **Gaussian Integers** *G* are numbers of the form

$$\{a+bi: a,b\in\mathbb{Z}\}$$

We want to define PRIME in G. What will be the exceptional numbers? Why?

Work in Groups

The exceptions are $\{1, -1, i, -i\}$. Why?

Def The **Gaussian Integers** *G* are numbers of the form

$$\{a+bi: a,b\in\mathbb{Z}\}$$

We want to define PRIME in G. What will be the exceptional numbers? Why?

Work in Groups

The exceptions are $\{1, -1, i, -i\}$. Why?

$$7 = i \times -i \times 7$$
.

We don't really want to count the i and -i.

Def Let D be some domain. If $x \in D$ then **the mult inverse of** x (if it exists) is the number y such that xy = 1.

Def Let D be some domain. If $x \in D$ then the mult inverse of x (if it exists) is the number y such that xy = 1.

In $\mathbb N$ the only number that has a mult inverse is 1.

Def Let D be some domain. If $x \in D$ then **the mult inverse of** x (if it exists) is the number y such that xy = 1.

In $\mathbb N$ the only number that has a mult inverse is 1.

In $\mathbb Z$ the only numbers that has a mult inverses are 1, -1.

Def Let D be some domain. If $x \in D$ then the mult inverse of x (if it exists) is the number y such that xy = 1.

In $\mathbb N$ the only number that has a mult inverse is 1.

In $\mathbb Z$ the only numbers that has a mult inverses are 1, -1.

In $\mathbb G$ the only numbers that has a mult inverses are 1, -1, i, -i.

Def Let D be some domain. If $x \in D$ then **the mult inverse of** x (if it exists) is the number y such that xy = 1.

In $\mathbb N$ the only number that has a mult inverse is 1.

In \mathbb{Z} the only numbers that has a mult inverses are 1, -1.

In \mathbb{G} the only numbers that has a mult inverses are 1, -1, i, -i.

Def Let D be a domain. The **units of** D are the elements of D that have a multiplicative inverse.

Def Let D be some domain. If $x \in D$ then **the mult inverse of** x (if it exists) is the number y such that xy = 1.

In $\mathbb N$ the only number that has a mult inverse is 1.

In $\mathbb Z$ the only numbers that has a mult inverses are 1, -1.

In \mathbb{G} the only numbers that has a mult inverses are 1, -1, i, -i. **Def** Let D be a domain. The **units of** D are the elements of D

that have a multiplicative inverse.

The Unit are the exceptions. If $x \in D$, u is a unit, and v is its inverse, then

x = uvx

We don't want to say x is not prime. u, v should not matter!

Units and Primes

Let *D* be any domain of numbers. We will be quantifying over it.

$$\mathrm{UNIT}(x) \equiv (\exists y)[xy=1]$$

Units and Primes

Let *D* be any domain of numbers. We will be quantifying over it.

$$UNIT(x) \equiv (\exists y)[xy = 1]$$

$$\mathrm{PRIME}(x) \equiv$$

$$(x \neq 0, x \notin \text{UNIT}) \land (\forall y, z)[x = yz \rightarrow ((y \in \text{UNIT}) \lor (z \in \text{UNIT})].$$

1) So thats why 1 is NOT a prime. In any domain *D* we have **Units**, **Primes**, **Composites**, **0**

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ?

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss All elements of \mathbb{Q} are units, so there are no primes.

- 1) So thats why 1 is NOT a prime. In any domain *D* we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss All elements of \mathbb{Q} are units, so there are no primes.
- 3) Let $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$. The only unit is 1.

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss All elements of \mathbb{Q} are units, so there are no primes.
- 3) Let $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$. The only unit is 1. What are the primes in ONEFOUR?

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss All elements of \mathbb{Q} are units, so there are no primes.
- 3) Let $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$. The only unit is 1. What are the primes in ONEFOUR? Work in Groups

- 1) So thats why 1 is NOT a prime. In any domain D we have **Units**, **Primes**, **Composites**, **0**
- 2) Can we define primes in \mathbb{Q} ? Discuss All elements of \mathbb{Q} are units, so there are no primes.
- 3) Let $ONEFOUR = \{n : n \equiv 1 \pmod{4}\}$. The only unit is 1. What are the primes in ONEFOUR? Work in Groups

Primes in ONEFOUR

Elements of ONEFOUR: 1, 5, 9, 13, 17, 21, 25. We stop here.

1: a unit

5: a prime

9: a prime! Note that $3 \notin \mathrm{ONEFOUR}$ so cannot say $9 = 3 \times 3$.

13,17: Primes

21: a prime!

25: 5×5 are first composite.

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4 squares.

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4 squares.

Four-Square Theorem Every natural number is the sum of 4 squares. We allow 0.

Expressing Theorems: Four-Square Theorem

Four-Square Theorem Every natural number is the sum of ≤ 4 squares.

Four-Square Theorem Every natural number is the sum of 4 squares. We allow 0.

$$(\forall x)(\exists x_1, x_2, x_3, x_4)[x = x_1^2 + x_2^2 + x_3^2 + x_4^2]$$

Expressing Statements: Goldbach's Conjecture

Goldbach's Conjecture Every sufficiently large even number can be written as the sum of two primes.

Expressing Statements: Goldbach's Conjecture

Goldbach's Conjecture Every sufficiently large even number can be written as the sum of two primes.

$$(\exists x)(\forall y > x)$$

$$[\text{EVEN}(y) \rightarrow (\exists y_1, y_2)[\text{PRIME}(y_1) \land \text{PRIME}(y_2) \land (y = y_1 + y_2)]]$$

Vinogradav's Theorem

Vinogradov's Theorem Every sufficiently large odd number can be written as the sum of three primes.

Vinogradav's Theorem

Vinogradov's Theorem Every sufficiently large odd number can be written as the sum of three primes.

$$(\exists x)(\forall y>x)$$

$$[ODD(y) \rightarrow$$

$$(\exists y_1, y_2, y_3)[\mathrm{PRIME}(y_1) \land \mathrm{PRIME}(y_2) \land \mathrm{PRIME}(y_3) \land (y = y_1 + y_2 + y_3)]]]$$

Thm $\sqrt{2} \notin \mathbb{Q}$. (We will prove this later in the course.)

Thm $\sqrt{2} \notin \mathbb{Q}$. (We will prove this later in the course.)

We want to express this with quantifiers over \mathbb{Z} .

Note that if $2 = \frac{x^2}{y^2}$ then $2y^2 = x^2$.

Thm $\sqrt{2} \notin \mathbb{Q}$. (We will prove this later in the course.)

We want to express this with quantifiers over $\ensuremath{\mathbb{Z}}.$

Note that if $2 = \frac{x^2}{y^2}$ then $2y^2 = x^2$.

$$\neg(\exists x,y)[2y^2=x^2]$$

Thm $\sqrt{2} \notin \mathbb{Q}$. (We will prove this later in the course.)

We want to express this with quantifiers over $\ensuremath{\mathbb{Z}}.$

Note that if $2 = \frac{x^2}{y^2}$ then $2y^2 = x^2$.

$$\neg(\exists x,y)[2y^2=x^2]$$

$$(\forall x, y)[2y^2 \neq x^2]$$

Thm $\sqrt{2} \notin \mathbb{Q}$. (We will prove this later in the course.)

We want to express this with quantifiers over $\ensuremath{\mathbb{Z}}.$

Note that if $2 = \frac{x^2}{y^2}$ then $2y^2 = x^2$.

$$\neg(\exists x,y)[2y^2=x^2]$$

$$(\forall x, y)[2y^2 \neq x^2]$$

Note that using $\neg(\exists x, y) \equiv (\forall x, y) \neg$ ended up not having a \neg in the final expression.

Order Notation

The following conversation would never happen.

The following conversation would never happen.

EMILY:Bill, I have an algorithm that solves SAT in roughly n^2 time!

The following conversation would never happen.

EMILY:Bill, I have an algorithm that solves SAT in roughly n^2 time!

BILL:Roughly? What do you mean?

The following conversation would never happen.

EMILY:Bill, I have an algorithm that solves SAT in roughly n^2 time!

BILL:Roughly? What do you mean?

EMILY: There are constants c, d, e such that my algorithm works in time $\leq cn^2 + dn + e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

The following conversation would never happen.

EMILY:Bill, I have an algorithm that solves SAT in roughly n^2 time!

BILL:Roughly? What do you mean?

EMILY: There are constants c, d, e such that my algorithm works in time $\leq cn^2 + dn + e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

BILL:What are c, d, e?

The following conversation would never happen.

EMILY:Bill, I have an algorithm that solves SAT in roughly n^2 time!

BILL:Roughly? What do you mean?

EMILY: There are constants c, d, e such that my algorithm works in time $\leq cn^2 + dn + e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

BILL:What are c, d, e?

EMILY: Who freakin cares! I solved SAT without using brute force and you are concerned with the constants!

1) When we first look at a problem we want to just get a sense of how hard it is:

1) When we first look at a problem we want to just get a sense of how hard it is: Exp vs Poly time?

1) When we first look at a problem we want to just get a sense of how hard it is: Exp vs Poly time? If poly then what degree?

1) When we first look at a problem we want to just get a sense of how hard it is: Exp vs Poly time? If poly then what degree? If roughly n^2 then can we get it to roughly $n \log n$ or n?

1) When we first look at a problem we want to just get a sense of how hard it is: Exp vs Poly time? If poly then what degree? If roughly n^2 then can we get it to roughly $n \log n$ or n? Once we have exhausted all of our tricks to get it into (say) roughly n^2 time we THEN would do things to get the constant down, perhaps non-rigorous things.

We want to say that we don't care about constants.

We want to say that we don't care about constants. We want to say that $18n^3 + 8n^2 + 12n + 1000$ is roughly n^3 .

We want to say that we don't care about constants. We want to say that $18n^3 + 8n^2 + 12n + 1000$ is roughly n^3 .

 $f \leq O(n^3)$ First attempt:

$$(\exists c)[f(n) \leq cn^3].$$

We want to say that we don't care about constants. We want to say that $18n^3 + 8n^2 + 12n + 1000$ is roughly n^3 .

 $f \leq O(n^3)$ First attempt:

$$(\exists c)[f(n) \leq cn^3].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^3)$ Second and final attempt:

We want to say that we don't care about constants. We want to say that $18n^3 + 8n^2 + 12n + 1000$ is roughly n^3 .

 $f \leq O(n^3)$ First attempt:

$$(\exists c)[f(n) \leq cn^3].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^3)$ Second and final attempt:

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cn^3].$$

We want to say that we don't care about constants. We want to say that $18n^3 + 8n^2 + 12n + 1000$ is roughly n^3 .

 $f \leq O(n^3)$ First attempt:

$$(\exists c)[f(n) \leq cn^3].$$

We do not really care what happens for small values of n. The following definition captures this:

 $f \leq O(n^3)$ Second and final attempt:

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cn^3].$$

We leave it to the reader to prove that

$$18n^3 + 8n^2 + 12n + 1000 = O(n^3)$$

by finding the values of n_0, c, d .

$$f = O(g)$$

$$f \leq O(g)$$
 means

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cg(n)].$$

$$f = O(g)$$

 $f \leq O(g)$ means

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \leq cg(n)].$$

You will see O() a lot in CMSC 351 and 451 when you deal with algorithms and want to bound the run time, roughly.

Other Ways to Use O()

 $f \in n^{O(1)}$ means poly time.

Other Ways to Use O()

 $f \in n^{O(1)}$ means poly time.

 $f \in 2^{O(n)}$ means 2^{cn} for some c, and after some n_0 .

The following conversation would never happen.

The following conversation would never happen. BILL:Emily, I have shown that SAT requires roughly 2^n time!

The following conversation would never happen. BILL:Emily, I have shown that SAT requires roughly 2^n time! EMILY:Roughly? What do you mean?

The following conversation would never happen.

BILL: Emily, I have shown that SAT requires roughly 2^n time!

EMILY:Roughly? What do you mean?

BILL:There are constants c, d, e such that ANY algorithm for SAT takes time $\geq 2^{cn} - dn^2 - e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

The following conversation would never happen.

BILL:Emily, I have shown that SAT requires roughly 2^n time!

EMILY:Roughly? What do you mean?

BILL:There are constants c, d, e such that ANY algorithm for SAT takes time $\geq 2^{cn} - dn^2 - e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

EMILY:What are c, d, e?

The following conversation would never happen.

BILL:Emily, I have shown that SAT requires roughly 2^n time!

EMILY:Roughly? What do you mean?

BILL:There are constants c, d, e such that ANY algorithm for SAT takes time $\geq 2^{cn} - dn^2 - e$. OH, the algorithm only has this runtime when the number of variables is ≥ 100 .

EMILY:What are c, d, e?

BILL:Who freakin cares! I showed SAT is not in poly time you are concerned with the constants!

$$f = \Omega(g)$$

$$f \geq \Omega(g)$$
 means

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \geq cg(n)].$$

$$f = \Omega(g)$$

 $f \geq \Omega(g)$ means

$$(\exists n_0)(\exists c)(\forall n \geq n_0)[f(n) \geq cg(n)].$$

This notation is used to express that an algorithm **requires** some amount of time.

If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

No. SAT could still be in time n^4 .

If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

No. SAT could still be in time n^4 .

If I proved that SAT requires $n^{\Omega(\log\log\log n)}$ time would I have solved P vs NP?

If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

No. SAT could still be in time n^4 .

If I proved that SAT requires $n^{\Omega(\log \log \log n)}$ time would I have solved P vs NP?

Yes. That function is bigger than any poly. But result would be odd since people **really** think SAT requires $2^{\Omega(n)}$.

If I proved that SAT requires $\Omega(n^3)$ time would I have solved P vs NP?

No. SAT could still be in time n^4 .

If I proved that SAT requires $n^{\Omega(\log\log\log n)}$ time would I have solved P vs NP?

Yes. That function is bigger than any poly. But result would be odd since people really think SAT requires $2^{\Omega(n)}$.

You would still get the \$1,000,000.