$$
\text { If } P=N P \text { then } \ldots
$$

1 Known Theorems and Definitions

Notation 1.1 P is the set of problems that are in polynomial time. Just think can be solved quickly.

Note that if $P=N P$ that means that one can determine quickly if a formula has a satisfying assignment. Can one also find a satisfying assignment if one exists? Yes:

Lemma 1.2 If $P=N P$ then there exists a poly-time algorithm that will, on input ϕ, do the following.

1. If $\phi \notin$ SAT then the output is $N O$
2. If $\phi \in$ SAT then the output is \vec{a} where $\phi(\vec{a})=T$ (so the output is a satisfying assignment).

Note that SAT is a \exists question: Does THERE EXIST a satisfying assignment? But what about a $\exists \forall$ question? If $P=N P$ then are those also easy? Yes:

Lemma 1.3 Assume $P=N P$ then the following are true.

1. Let B be a set of pairs that is in P. (Think given x, y, determining $(x, y) \in B$ can be done quickly). Let q be a polynomial. Then the following problem is in P

$$
A=\{x:(\exists y,|y| \leq q(|x|))[(x, y) \in B\} .
$$

Example Let

$$
B=\{(\phi, \vec{y}): \phi(\vec{y})=T\} .
$$

Then

$$
A=\{\phi:(\exists y,|y| \leq q(|x|))[(\phi, y) \in B\} .
$$

Note that A is SAT.
Non-SAT Example G is a set of cities and a table that tells you how much it costs to go from one to the other. c is a cost so just a natural number. y is a sequence of cities so that you hit every one once.

$$
B=\{(G, c), y)): \text { The sequence } y \text { costs } \leq c\}
$$

Then

$$
A=\{(G, c):(\exists y)[\text { The sequence } y \text { costs } \leq c\}
$$

HENCEFORTH $\left(\exists^{p} x\right)$ and $\left(\forall^{p} x\right)$ WILL MEAN THAT THE DOMAIN OF x IS STRINGS BOUNDED BY SOME POLY IN THE LENGTH OF THE PREVIOUS VARIABLES.
2. Let B be a set of triples that are in P (just think given x, y, z, determining $(x, y, z) \in B$ can be done quickly). Let q be a polynomial. Then the following problem is in P

$$
A=\left\{x:\left(\exists^{p} y\right)\left(\forall^{p} z\right)[(x, y, z) \in B] .\right\}
$$

Example Let $\phi(\vec{x}, \vec{y})$ be a formula with variables in \vec{x} and \vec{y}. So its really $\phi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$.

$$
B=\{(\phi, \vec{x}, \vec{y}): \phi(\vec{x}, \phi y)=T\} .
$$

Then

$$
A=\{\phi(\vec{x}, \vec{y}):(\exists \vec{x})(\forall \vec{y})[\phi(\vec{x}, \vec{y})] .
$$

Note that A is not $S A T$, its a $\exists \forall$ version of SAT.
3. Let B be a set of four-tuples (or five-tuples etc.) that are in P. Similar to last part.

Say we have that $S A T$ is in Poly Time but perhaps with a large polynomial. Can we ASK if there is a better program? Yes, though in a limited domain:

Lemma 1.4 If $P=N P$ then there exists a poly-time algorithm that will, on input program M, a poly q, and a number n will do the following.

1. If M is an algorithm for SAT restricted to $\leq n$ variables such that on any input on $k \leq n$ variables runs in time $\leq q(k)$ then output YES. (So if M is a FAST algorithm for SAT restricted to $\leq n$ variables then output YES.)
2. Otherwise output $N O$

Proof:

For this problme we take the number of variables to be the size of a formula .

Let A be the set of all (M, q, n) such that the following are true

1. $(\forall \phi,|\phi|=m \leq n)[M(\phi)$ runs in time $\leq q(m)]$.
2. $(\forall \phi,|\phi|=m \leq n)[M(\phi)=\vec{a} \rightarrow \phi(\vec{a})=T]$.

If $M(\phi)$ outputs a vector, its a satisfying assignment.
3. $(\forall \phi,|\phi|=m \leq n)[M(\phi)=N O \rightarrow(\forall \vec{a})[\phi(\vec{a})=F]$.

If $M(\phi)$ outputs NO then ϕ is NOT satisfiable.
This can be written with quantifiers and fit into the form of Lemma 1.3. Hence the problem is in P.

Can we actually FIND a better algorithm? Yes.
Lemma 1.5 If $P=N P$ then there exists a poly-time algorithm that will, on input a poly q, and a number n will do the following: Determine if there exists an Algorithm M as in the last lemma, and if so then OUTPUT THE ALGORITHM.

Theorem 1.6 Assume $P=N P$ (though perhaps with a terrible algorithm). Assume there exists a better algorithm that works when the number of variables is $\leq 10^{10}$. Then we can find that algorithm.

Proof:

Run the algorithm in Lemma 1.4 on smaller and smaller polynomials (and $n=10^{10}$) until you find a small polynomial (small enough for your purposes) where it says YES.

Note the following

1. Since you may have $P=N P$ but with a terrible algorithm, finding the better algorithm will take a long time. But its a one-time cost.
2. The inventor of the terrible $P=N P$ algorithm probably understood the algorithm, as did others who looked at it. But the new much-better algorithm was machine generated and hence it is possible, indeed likely, that nobody understands it.
3. I am assuming that there exists a good algorithm. If this is incorrect, thats sad, but the approach above will verify that there is no good algorithm.
