
If P = NP then . . .

1 Known Theorems and Definitions

Notation 1.1 P is the set of problems that are in polynomial time. Just
think can be solved quickly.

Note that if P = NP that means that one can determine quickly if a
formula has a satisfying assignment. Can one also find a satisfying assignment
if one exists? Yes:

Lemma 1.2 If P = NP then there exists a poly-time algorithm that will,
on input ϕ, do the following.

1. If ϕ ̸∈ SAT then the output is NO

2. If ϕ ∈ SAT then the output is a⃗ where ϕ(⃗a) = T (so the output is a
satisfying assignment).

Note that SAT is a ∃ question: Does THERE EXIST a satisfying assign-
ment? But what about a ∃∀ question? If P = NP then are those also easy?
Yes:

Lemma 1.3 Assume P = NP then the following are true.

1. Let B be a set of pairs that is in P . (Think given x, y, determining
(x, y) ∈ B can be done quickly). Let q be a polynomial. Then the
following problem is in P

A = {x : (∃y, |y| ≤ q(|x|))[(x, y) ∈ B}.

Example Let

B = {(ϕ, y⃗) : ϕ(y⃗) = T}.

Then

A = {ϕ : (∃y, |y| ≤ q(|x|))[(ϕ, y) ∈ B}.

1

Note that A is SAT.

Non-SAT Example G is a set of cities and a table that tells you how
much it costs to go from one to the other. c is a cost so just a natural
number. y is a sequence of cities so that you hit every one once.

B = {(G, c), y)) : The sequence y costs ≤ c }.

Then

A = {(G, c) : (∃y)[The sequence y costs ≤ c }.

HENCEFORTH (∃px) and (∀px) WILL MEAN THAT THE
DOMAIN OF x IS STRINGS BOUNDED BY SOME POLY
IN THE LENGTH OF THE PREVIOUS VARIABLES.

2. Let B be a set of triples that are in P (just think given x, y, z, deter-
mining (x, y, z) ∈ B can be done quickly). Let q be a polynomial. Then
the following problem is in P

A = {x : (∃py)(∀pz)[(x, y, z) ∈ B].}

Example Let ϕ(x⃗, y⃗) be a formula with variables in x⃗ and y⃗. So its
really ϕ(x1, . . . , xn, y1, . . . , ym).

B = {(ϕ, x⃗, y⃗) : ϕ(x⃗, ϕy) = T}.

Then

A = {ϕ(x⃗, y⃗) : (∃x⃗)(∀y⃗)[ϕ(x⃗, y⃗)].

Note that A is not SAT, its a ∃∀ version of SAT.

3. Let B be a set of four-tuples (or five-tuples etc.) that are in P . Similar
to last part.

Say we have that SAT is in Poly Time but perhaps with a large polyno-
mial. Can we ASK if there is a better program? Yes, though in a limited
domain:

2

Lemma 1.4 If P = NP then there exists a poly-time algorithm that will,
on input program M , a poly q, and a number n will do the following.

1. If M is an algorithm for SAT restricted to ≤ n variables such that on
any input on k ≤ n variables runs in time ≤ q(k) then output YES.
(So if M is a FAST algorithm for SAT restricted to ≤ n variables then
output YES.)

2. Otherwise output NO

Proof:
For this problme we take the number of variables to be the size of a

formula .
Let A be the set of all (M, q, n) such that the following are true

1. (∀ϕ, |ϕ| = m ≤ n)[M(ϕ) runs in time ≤ q(m)].

2. (∀ϕ, |ϕ| = m ≤ n)[M(ϕ) = a⃗ → ϕ(⃗a) = T].

If M(ϕ) outputs a vector, its a satisfying assignment.

3. (∀ϕ, |ϕ| = m ≤ n)[M(ϕ) = NO → (∀a⃗)[ϕ(⃗a) = F].

If M(ϕ) outputs NO then ϕ is NOT satisfiable.

This can be written with quantifiers and fit into the form of Lemma 1.3.
Hence the problem is in P .

Can we actually FIND a better algorithm? Yes.

Lemma 1.5 If P = NP then there exists a poly-time algorithm that will,
on input a poly q, and a number n will do the following: Determine if there
exists an Algorithm M as in the last lemma, and if so then OUTPUT THE
ALGORITHM.

Theorem 1.6 Assume P = NP (though perhaps with a terrible algorithm).
Assume there exists a better algorithm that works when the number of vari-
ables is ≤ 1010. Then we can find that algorithm.

3

Proof:
Run the algorithm in Lemma 1.4 on smaller and smaller polynomials (and

n = 1010) until you find a small polynomial (small enough for your purposes)
where it says YES.

Note the following

1. Since you may have P = NP but with a terrible algorithm, finding the
better algorithm will take a long time. But its a one-time cost.

2. The inventor of the terrible P = NP algorithm probably understood
the algorithm, as did others who looked at it. But the new much-better
algorithm was machine generated and hence it is possible, indeed likely,
that nobody understands it.

3. I am assuming that there exists a good algorithm. If this is incorrect,
thats sad, but the approach above will verify that there is no good
algorithm.

4

