Rev For Mid I：Logic

4ロ〉4甸

Rev of Propositional Logic

Propositional Logic

1. \wedge, \vee, \neg, goes

Propositional Logic

1. \wedge, \vee, \neg, goes
2. Truth Tables (TT):

Propositional Logic

1. \wedge, \vee, \neg, goes
2. Truth Tables (TT):
2.1 Given a formula, can find the TT for it.

Propositional Logic

1. \wedge, \vee, \neg, goes
2. Truth Tables (TT):
2.1 Given a formula, can find the TT for it. Have class do some examples of this.

Propositional Logic

1. \wedge, \vee, \neg, goes
2. Truth Tables (TT):
2.1 Given a formula, can find the TT for it. Have class do some examples of this.
2.2 Given a TT, can find a DNF formula for it.

Propositional Logic

1. \wedge, \vee, \neg, goes
2. Truth Tables (TT):
2.1 Given a formula, can find the TT for it. Have class do some examples of this.
2.2 Given a TT, can find a DNF formula for it. Have class do some examples of this.
2.3 A formula with n variables has a TT with 2^{n} rows.

Circuits

Recall from the last slide:

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.
Easy: Given a Formula, you can make a circuit out of it.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.
Easy: Given a Formula, you can make a circuit out of it.
Upshot given a TT, can make a circuit for it.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.
Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.
Can use this to make circuits that compute arithmetic functions.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.
Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.
Can use this to make circuits that compute arithmetic functions.
Discuss how you write a circuit tha tells, given an 8-bit number, outputs Y if prime and N if not prime.

Circuits: Half-Adders and Full-Adders

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and the carry. Called a Half-Adder (HA).

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and the carry. Called a Half-Adder (HA).
2. Can do a circiuit that inputs 3 bits and outputs the sum and the carry. Called a Full-Adder (HA).

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and the carry. Called a Half-Adder (HA).
2. Can do a circiuit that inputs 3 bits and outputs the sum and the carry. Called a Full-Adder (HA).
3. Can combine HA and FAs to get create a circuit that adds two n-bit numbers.

Logical Equivalance

Logical Equivalance

1. Two formulas are equivalent if they have the same TT.

Logical Equivalance

1. Two formulas are equivalent if they have the same TT.
2. Some well known equivalences:
$2.1 \neg \neg p \equiv p$
$2.2 \neg(p \vee q) \equiv \neg p \wedge \neg q$.
$2.3 \neg(p \wedge q) \equiv \neg p \vee \neg q$.
2.4 There are others.

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F .
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$. If \vec{b} exists it is called a SATisfying (SAT) Assignment.

$$
\begin{aligned}
& \quad\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT} \text { ? } \\
& \text { Yes } x_{1}=T, x_{2}=F, x_{3}=F
\end{aligned}
$$

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge \neg x_{3} \in \mathrm{SAT} ?
$$

SATisfiability (SAT)

Def $\phi(\vec{x}) \in$ SAT if there is \vec{b} such that $\phi(\vec{b})=T$.
If \vec{b} exists it is called a SATisfying (SAT) Assignment.
$\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \in \mathrm{SAT}$?
Yes $x_{1}=T, x_{2}=F, x_{3}=F$.

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right) \wedge x_{2} \in \mathrm{SAT} ?
$$

NO Any SAT assignment needs $x_{2}=T$. So question is:

$$
x_{1} \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge \neg x_{3} \in \operatorname{SAT} ?
$$

In any SAT assignment need $x_{1}=T$ and $x_{3}=F$ so $\neg x_{1} \vee x_{3}$ is F. Hence NOT in SAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form
$C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.
4. DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is, $\phi(\vec{x}) \in S A T$ if there exists a vector \vec{b} such that $\phi(\vec{b})=T$.
2. CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of literals.
3. k-CNFSAT is the set of all formulas in SAT of the form $C_{1} \wedge \cdots \wedge C_{m}$ where each C_{i} is an \vee of exactly k literals. Called kSAT.
4. DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of literals.
5. k-DNFSAT is the set of all formulas in SAT of the form $C_{1} \vee \cdots \vee C_{m}$ where each C_{i} is an \wedge of exactly k literals.

Easy and Hard Forms for SAT

1. 2SAT is in P

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT. Give an example of a formula in 2-CNF that is not in SAT.
2. DNFSAT is in P

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT. Give an example of a formula in 2-CNF that is not in SAT.
2. DNFSAT is in P

Give an example of a formula in DNF that is in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.
2. DNFSAT is in P

Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.
3. 3SAT is thought to not be in P (NP-complete).

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.
2. DNFSAT is in P

Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.
3. 3SAT is thought to not be in P (NP-complete).

Give an example of a formula in 3-CNF that is in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.
2. DNFSAT is in P

Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.
3. 3SAT is thought to not be in P (NP-complete).

Give an example of a formula in 3-CNF that is in SAT. Give an example of a formula in 3-CNF that is not in SAT.

SAT is interesting

SAT is interesting

The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P$) \leftrightarrow($ SCHED is in P$)$.

SAT is interesting

The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P). There are thousands of problems are equiv to SAT. Hence:

SAT is interesting

The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

- The complexity of 3-SAT is important since it relates to the complexity of many other problems.

SAT is interesting

The following is known:
(3-SAT is in P) $\leftrightarrow($ TSP is in P) \leftrightarrow (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

- The complexity of 3-SAT is important since it relates to the complexity of many other problems.
- Many of the problems 3-SAT is equivalent to have been worked on for 90 or more years; hence, it is unlikely they are in P . Hence it is unlikely that 3-SAT is in P .

Rev of Quantifier Logic

Quantifiers

Quantifiers

1. $\exists x$ means exists x. Domain matters!

Quantifiers

1. $\exists x$ means exists x. Domain matters! $\forall x$ means for all x. Domain matters!

Quantifiers

1. $\exists x$ means exists x. Domain matters! $\forall x$ means for all x. Domain matters!
2. Give a D so that $(\forall x)(\exists y)[x+y=5]$ is true.

Quantifiers

1. $\exists x$ means exists x. Domain matters! $\forall x$ means for all x. Domain matters!
2. Give a D so that $(\forall x)(\exists y)[x+y=5]$ is true.
3. Give a D so that $(\forall x)(\exists y)[x+y=1]$ is false.

Quantifiers

1. $\exists x$ means exists x. Domain matters! $\forall x$ means for all x. Domain matters!
2. Give a D so that $(\forall x)(\exists y)[x+y=5]$ is true.
3. Give a D so that $(\forall x)(\exists y)[x+y=1]$ is false.
4. Give a D so that $(\forall x)(\exists y)[x y=5]$ is true.

Quantifiers

1. $\exists x$ means exists x. Domain matters! $\forall x$ means for all x. Domain matters!
2. Give a D so that $(\forall x)(\exists y)[x+y=5]$ is true.
3. Give a D so that $(\forall x)(\exists y)[x+y=1]$ is false.
4. Give a D so that $(\forall x)(\exists y)[x y=5]$ is true.
5. Give a D so that $(\forall x)(\exists y)[x y=5]$ is false.

$$
\begin{gathered}
\neg(\exists x)[P(x)] \\
\equiv \\
(\forall x)[\neg P(x)]
\end{gathered}
$$

Quantifiers and Math

The domain is \mathbb{Z}.

Quantifiers and Math

The domain is \mathbb{Z}.
How you would you write with quantifies:
For all but a finite number of $x, P(x)$ happens.

Quantifiers and Math

The domain is \mathbb{Z}.
How you would you write with quantifies:
For all but a finite number of $x, P(x)$ happens.
How you would you write with quantifies:
For an infinite number of $x, P(x)$ happens.

Quantifiers and Math

The domain is \mathbb{Z}.
How you would you write with quantifies:
For all but a finite number of $x, P(x)$ happens.
How you would you write with quantifies:
For an infinite number of $x, P(x)$ happens.
How you would you write with quantifies:
For all but a finite number of $x, y P(x, y)$ happens.

Quantifiers and Math

The domain is \mathbb{Z}.
How you would you write with quantifies:
For all but a finite number of $x, P(x)$ happens.
How you would you write with quantifies:
For an infinite number of $x, P(x)$ happens.
How you would you write with quantifies:
For all but a finite number of $x, y P(x, y)$ happens.
How you would you write with quantifies:
For an infinite number of $x, y, P(x, y)$ happens.

Quantifiers and Math

The domain is \mathbb{N}.

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers: x is the sum of 8 cubes.

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.
How you would you write the following with quantifiers:

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.
How you would you write the following with quantifiers:
All but a finite number of numbers can be written as the sum of 7 cubes

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.
How you would you write the following with quantifiers:
All but a finite number of numbers can be written as the sum of 7 cubes
All but a finite number of numbers can be written as the sum of 7 cubes An infinite number of numbers cannot be written as the sum of 3 cubes

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.
How you would you write the following with quantifiers:
All but a finite number of numbers can be written as the sum of 7 cubes
All but a finite number of numbers can be written as the sum of 7 cubes An infinite number of numbers cannot be written as the sum of 3 cubes
The above statements are true but hard to prove.

Quantifiers and Math

The domain is \mathbb{N}.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.
How you would you write the following with quantifiers:
All but a finite number of numbers can be written as the sum of 7 cubes
All but a finite number of numbers can be written as the sum of 7 cubes An infinite number of numbers cannot be written as the sum of 3 cubes
The above statements are true but hard to prove.
The point of the math-with-quant slides is that we can STATE math of interest clearly using quantifiers.

Vacously True

Domain is \mathbb{N}.

Vacously True

Domain is \mathbb{N}.

$$
(\forall x)[x<-1 \rightarrow x \text { is prime }] .
$$

Vacously True

Domain is \mathbb{N}.

$$
(\forall x)[x<-1 \rightarrow x \text { is prime }] .
$$

True or False?

Vacously True

Domain is \mathbb{N}.

$$
(\forall x)[x<-1 \rightarrow x \text { is prime }] .
$$

True or False?
True.

Vacously True

Domain is \mathbb{N}.

$$
(\forall x)[x<-1 \rightarrow x \text { is prime }] .
$$

True or False?
True.
If you want to show this is false then have to find an $x \in \mathbb{N}$ such that

$$
x<-1 \text { and } x \text { is not prime }
$$

Vacously True

Domain is \mathbb{N}.

$$
(\forall x)[x<-1 \rightarrow x \text { is prime }] .
$$

True or False?
True.
If you want to show this is false then have to find an $x \in \mathbb{N}$ such that

$$
x<-1 \text { and } x \text { is not prime }
$$

You can't! So the statement is true.

An Interesting HW Question

For this problem we use the following standard terminology:

An Interesting HW Question

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Longrightarrow(\exists z)[x<z<y]]$.

An Interesting HW Question

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Longrightarrow(\exists z)[x<z<y]]$.
A domain has a \min if $(\exists x)(\forall y)[x \leq y]$.

An Interesting HW Question

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Longrightarrow(\exists z)[x<z<y]]$.
A domain has a min if $(\exists x)(\forall y)[x \leq y]$.
A domain has a max if $(\exists x)(\forall y)[y \leq x]$.

An Interesting HW Question

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Longrightarrow(\exists z)[x<z<y]]$.
A domain has a min if $(\exists x)(\forall y)[x \leq y]$.
A domain has a max if $(\exists x)(\forall y)[y \leq x]$.
In this problem we list conditions on a domain. EITHER give a domain that satisfies the conditions OR state that there is NO such domain (no proof required).

An Interesting HW Question

For this problem we use the following standard terminology:
A domain is dense if $(\forall x, y)[x<y \Longrightarrow(\exists z)[x<z<y]]$.
A domain has a min if $(\exists x)(\forall y)[x \leq y]$.
A domain has a max if $(\exists x)(\forall y)[y \leq x]$.
In this problem we list conditions on a domain. EITHER give a domain that satisfies the conditions OR state that there is NO such domain (no proof required).
The list of conditions is on the next slide.

Conditions

1) D is finite and dense.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

DOES EXIST: \mathbb{Z}.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

DOES EXIST: \mathbb{Z}.
4) D infinite, has min, has max, and is dense.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

DOES EXIST: \mathbb{Z}.
4) D infinite, has min, has max, and is dense.

DOES EXIST: $[0,1]$.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

DOES EXIST: \mathbb{Z}.
4) D infinite, has min, has max, and is dense.

DOES EXIST: $[0,1]$.
5) D infinite, has min, has max, and is NOT dense.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is \emptyset. Dense vacously.
2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since $|D| \geq 2$ let $x<y$ be in D. Then there exists $z \in D, x<z<y$. Then there is a point between x and z and between z and y. Keep doing this. D is infinite.
3) D is infinite and not dense

DOES EXIST: \mathbb{Z}.
4) D infinite, has min, has max, and is dense.

DOES EXIST: $[0,1]$.
5) D infinite, has min, has max, and is NOT dense.

DOES EXIST: $\left\{-1,-\frac{1}{2},-\frac{1}{3}, \ldots\right\} \cup\left\{\ldots, \frac{1}{3}, \frac{1}{2}, 1\right\}$

Sets

$$
\text { 4ロ } 4 \text { 岛 } 1 \text { 三 }
$$

Set Operations

A, B, U are all sets. U is the universe we are in (e.g., \mathbb{R}).

Set Operations

A, B, U are all sets. U is the universe we are in (e.g., \mathbb{R}).

1. $A \cup B=\{x: x \in A \vee x \in B\}$.

Set Operations

A, B, U are all sets. U is the universe we are in (e.g., \mathbb{R}).

1. $A \cup B=\{x: x \in A \vee x \in B\}$.
2. $A \cap B=\{x: x \in A \wedge x \in B\}$.

Set Operations

A, B, U are all sets. U is the universe we are in (e.g., \mathbb{R}).

1. $A \cup B=\{x: x \in A \vee x \in B\}$.
2. $A \cap B=\{x: x \in A \wedge x \in B\}$.
3. $\bar{A}=\{x \in U: x \notin\}$.

Note that \bar{A} only makes sense if you have a Universe.

Empty Set

Empty Set

1. \emptyset is the empty set.
1.1 $A \cup \emptyset=A$

Empty Set

1. \emptyset is the empty set.
1.1 $A \cup \emptyset=A$
1.2 $A \cap \emptyset=\emptyset$.

Power Set

Definition Of A is a set then the powerset of A, denoted $P(A)$, is the set of all subsets of A.

Power Set

Definition Of A is a set then the powerset of A, denoted $P(A)$, is the set of all subsets of A.
If $A=\{4,6,9\}$ then
$P(A)$ is

$$
\{\emptyset,\{4\},\{6\},\{9\},\{4,6\},\{4,9\},\{6,9\},\{4,6,9\}\}
$$

