
Rev For Mid I: Logic

Rev of Propositional
Logic

Propositional Logic

1. ∧, ∨, ¬, goes

2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.

Propositional Logic

1. ∧, ∨, ¬, goes
2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.

Propositional Logic

1. ∧, ∨, ¬, goes
2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it.

Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.

Propositional Logic

1. ∧, ∨, ¬, goes
2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.

Propositional Logic

1. ∧, ∨, ¬, goes
2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.

Have class do some examples of this.
2.3 A formula with n variables has a TT with 2n rows.

Propositional Logic

1. ∧, ∨, ¬, goes
2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.

Circuits

Recall from the last slide:

Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits

Recall from the last slide:
Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and
the carry. Called a Half-Adder (HA).

2. Can do a circiuit that inputs 3 bits and outputs the sum and
the carry. Called a Full-Adder (HA).

3. Can combine HA and FAs to get create a circuit that adds
two n-bit numbers.

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and
the carry. Called a Half-Adder (HA).

2. Can do a circiuit that inputs 3 bits and outputs the sum and
the carry. Called a Full-Adder (HA).

3. Can combine HA and FAs to get create a circuit that adds
two n-bit numbers.

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and
the carry. Called a Half-Adder (HA).

2. Can do a circiuit that inputs 3 bits and outputs the sum and
the carry. Called a Full-Adder (HA).

3. Can combine HA and FAs to get create a circuit that adds
two n-bit numbers.

Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and
the carry. Called a Half-Adder (HA).

2. Can do a circiuit that inputs 3 bits and outputs the sum and
the carry. Called a Full-Adder (HA).

3. Can combine HA and FAs to get create a circuit that adds
two n-bit numbers.

Logical Equivalance

1. Two formulas are equivalent if they have the same TT.

2. Some well known equivalences:

2.1 ¬¬p ≡ p
2.2 ¬(p ∨ q) ≡ ¬p ∧ ¬q.
2.3 ¬(p ∧ q) ≡ ¬p ∨ ¬q.
2.4 There are others.

Logical Equivalance

1. Two formulas are equivalent if they have the same TT.

2. Some well known equivalences:

2.1 ¬¬p ≡ p
2.2 ¬(p ∨ q) ≡ ¬p ∧ ¬q.
2.3 ¬(p ∧ q) ≡ ¬p ∨ ¬q.
2.4 There are others.

Logical Equivalance

1. Two formulas are equivalent if they have the same TT.

2. Some well known equivalences:

2.1 ¬¬p ≡ p
2.2 ¬(p ∨ q) ≡ ¬p ∧ ¬q.
2.3 ¬(p ∧ q) ≡ ¬p ∨ ¬q.
2.4 There are others.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?

Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?

NO Any SAT assignment needs x2 = T . So question is:
x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?

In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?

In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT.

That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.

Easy and Hard Forms for SAT

1. 2SAT is in P

Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.

Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.

Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P

Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.

Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).

Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.

Give an example of a formula in 3-CNF that is not in SAT.

Easy and Hard Forms for SAT

1. 2SAT is in P Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.

SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).

There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.

Rev of Quantifier Logic

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters!

∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.

¬(∃x)[P(x)]
≡

(∀x)[¬P(x)]

Quantifiers and Math

The domain is Z.

How you would you write with quantifies:
For all but a finite number of x, P(x) happens.

How you would you write with quantifies:
For an infinite number of x, P(x) happens.
How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.

Quantifiers and Math

The domain is Z.
How you would you write with quantifies:
For all but a finite number of x, P(x) happens.

How you would you write with quantifies:
For an infinite number of x, P(x) happens.
How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.

Quantifiers and Math

The domain is Z.
How you would you write with quantifies:
For all but a finite number of x, P(x) happens.

How you would you write with quantifies:
For an infinite number of x, P(x) happens.

How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.

Quantifiers and Math

The domain is Z.
How you would you write with quantifies:
For all but a finite number of x, P(x) happens.

How you would you write with quantifies:
For an infinite number of x, P(x) happens.
How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.

Quantifiers and Math

The domain is Z.
How you would you write with quantifies:
For all but a finite number of x, P(x) happens.

How you would you write with quantifies:
For an infinite number of x, P(x) happens.
How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.

Quantifiers and Math

The domain is N.

How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Quantifiers and Math

The domain is N.
How you would you write the following with quantifiers:
x is the sum of 8 cubes.

How you would you write the following with quantifiers:

All but a finite number of numbers can be written as the
sum of 7 cubes

All but a finite number of numbers can be written as the
sum of 7 cubes An infinite number of numbers cannot be
written as the sum of 3 cubes

The above statements are true but hard to prove.

The point of the math-with-quant slides is that we can STATE
math of interest clearly using quantifiers.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.

If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime

You can’t! So the statement is true.

Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y]].

A domain has a min if (∃x)(∀y)[x ≤ y].

A domain has a max if (∃x)(∀y)[y ≤ x].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.

Conditions

1) D is finite and dense.

DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.

DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense

DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.

4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.

DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.

DOES EXIST: {−1,−1
2 ,−

1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Conditions

1) D is finite and dense.
DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1

2 ,−
1
3 , . . .} ∪ {. . . , 13 ,

1
2 , 1}

Sets

Set Operations

A,B,U are all sets. U is the universe we are in (e.g., R).

1. A ∪ B = {x : x ∈ A ∨ x ∈ B}.
2. A ∩ B = {x : x ∈ A ∧ x ∈ B}.
3. A = {x ∈ U : x /∈}.

Note that A only makes sense if you have a Universe.

Set Operations

A,B,U are all sets. U is the universe we are in (e.g., R).
1. A ∪ B = {x : x ∈ A ∨ x ∈ B}.

2. A ∩ B = {x : x ∈ A ∧ x ∈ B}.
3. A = {x ∈ U : x /∈}.

Note that A only makes sense if you have a Universe.

Set Operations

A,B,U are all sets. U is the universe we are in (e.g., R).
1. A ∪ B = {x : x ∈ A ∨ x ∈ B}.
2. A ∩ B = {x : x ∈ A ∧ x ∈ B}.

3. A = {x ∈ U : x /∈}.
Note that A only makes sense if you have a Universe.

Set Operations

A,B,U are all sets. U is the universe we are in (e.g., R).
1. A ∪ B = {x : x ∈ A ∨ x ∈ B}.
2. A ∩ B = {x : x ∈ A ∧ x ∈ B}.
3. A = {x ∈ U : x /∈}.

Note that A only makes sense if you have a Universe.

Empty Set

1. ∅ is the empty set.

1.1 A ∪ ∅ = A
1.2 A ∩ ∅ = ∅.

Empty Set

1. ∅ is the empty set.

1.1 A ∪ ∅ = A

1.2 A ∩ ∅ = ∅.

Empty Set

1. ∅ is the empty set.

1.1 A ∪ ∅ = A
1.2 A ∩ ∅ = ∅.

Power Set

Definition Of A is a set then the powerset of A, denoted P(A),
is the set of all subsets of A.

If A = {4, 6, 9} then
P(A) is

{∅, {4}, {6}, {9}, {4, 6}, {4, 9}, {6, 9}, {4, 6, 9}}

Power Set

Definition Of A is a set then the powerset of A, denoted P(A),
is the set of all subsets of A.

If A = {4, 6, 9} then
P(A) is

{∅, {4}, {6}, {9}, {4, 6}, {4, 9}, {6, 9}, {4, 6, 9}}

