
Rev For Mid I: Logic



Rev of Propositional
Logic



Propositional Logic

1. ∧, ∨, ¬, goes

2. Truth Tables (TT):

2.1 Given a formula, can find the TT for it. Have class do some
examples of this.

2.2 Given a TT, can find a DNF formula for it.
Have class do some examples of this.

2.3 A formula with n variables has a TT with 2n rows.
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Circuits

Recall from the last slide:

Given a TT, can find a DNF formula for it.

Easy: Given a Formula, you can make a circuit out of it.

Upshot given a TT, can make a circuit for it.

Can use this to make circuits that compute arithmetic functions.

Discuss how you write a circuit tha tells, given an 8-bit number,
outputs Y if prime and N if not prime.
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Circuits: Half-Adders and Full-Adders

1. Can do a circiuit that inputs 2 bits and outputs the sum and
the carry. Called a Half-Adder (HA).

2. Can do a circiuit that inputs 3 bits and outputs the sum and
the carry. Called a Full-Adder (HA).

3. Can combine HA and FAs to get create a circuit that adds
two n-bit numbers.
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Logical Equivalance

1. Two formulas are equivalent if they have the same TT.

2. Some well known equivalences:

2.1 ¬¬p ≡ p
2.2 ¬(p ∨ q) ≡ ¬p ∧ ¬q.
2.3 ¬(p ∧ q) ≡ ¬p ∨ ¬q.
2.4 There are others.
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SATisfiability (SAT)

Def ϕ(x⃗) ∈ SAT if there is b⃗ such that ϕ(b⃗) = T .
If b⃗ exists it is called a SATisfying (SAT) Assignment.

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3) ∈ SAT?
Yes x1 = T , x2 = F , x3 = F .

(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ x2 ∈ SAT?
NO Any SAT assignment needs x2 = T . So question is:

x1 ∧ (¬x1 ∨ x3) ∧ ¬x3 ∈ SAT?
In any SAT assignment need x1 = T and x3 = F so ¬x1 ∨ x3 is F .
Hence NOT in SAT.
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Is There a Class of Formulas for Which SAT is in P?

We define several variants of SAT:

1. SAT is the set of all formulas that are in SAT. That is,
ϕ(x⃗) ∈ SAT if there exists a vector b⃗ such that ϕ(b⃗) = T .

2. CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of literals.

3. k-CNFSAT is the set of all formulas in SAT of the form
C1 ∧ · · · ∧ Cm where each Ci is an ∨ of exactly k literals.
Called kSAT.

4. DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of literals.

5. k-DNFSAT is the set of all formulas in SAT of the form
C1 ∨ · · · ∨ Cm where each Ci is an ∧ of exactly k literals.
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Easy and Hard Forms for SAT

1. 2SAT is in P

Use 3 vars.
Give an example of a formula in 2-CNF that is in SAT.
Give an example of a formula in 2-CNF that is not in SAT.

2. DNFSAT is in P
Give an example of a formula in DNF that is in SAT.
Give an example of a formula in DDF that is not in SAT.

3. 3SAT is thought to not be in P (NP-complete).
Give an example of a formula in 3-CNF that is in SAT.
Give an example of a formula in 3-CNF that is not in SAT.
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SAT is interesting

The following is known:
(3-SAT is in P) ↔ (TSP is in P) ↔ (SCHED is in P).
There are thousands of problems are equiv to SAT. Hence:

▶ The complexity of 3-SAT is important since it relates to the
complexity of many other problems.

▶ Many of the problems 3-SAT is equivalent to have been
worked on for 90 or more years; hence, it is unlikely they are
in P. Hence it is unlikely that 3-SAT is in P.
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Rev of Quantifier Logic



Quantifiers

1. ∃x means exists x . Domain matters! ∀x means for all x .
Domain matters!

1. Give a D so that (∀x)(∃y)[x + y = 5] is true.

2. Give a D so that (∀x)(∃y)[x + y = 1] is false.

3. Give a D so that (∀x)(∃y)[xy = 5] is true.

4. Give a D so that (∀x)(∃y)[xy = 5] is false.
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≡
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How you would you write with quantifies:
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For an infinite number of x, P(x) happens.
How you would you write with quantifies:
For all but a finite number of x,y P(x , y) happens.

How you would you write with quantifies:
For an infinite number of x , y , P(x , y) happens.
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The point of the math-with-quant slides is that we can STATE
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Vacously True

Domain is N.

(∀x)[x < −1 → x is prime].

True or False?

True.
If you want to show this is false then have to find an x ∈ N such
that

x < −1 and x is not prime
You can’t! So the statement is true.
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An Interesting HW Question

For this problem we use the following standard terminology:

A domain is dense if (∀x , y)[x < y =⇒ (∃z)[x < z < y ]].

A domain has a min if (∃x)(∀y)[x ≤ y ].

A domain has a max if (∃x)(∀y)[y ≤ x ].

In this problem we list conditions on a domain. EITHER give a
domain that satisfies the conditions OR state that there is NO
such domain (no proof required).

The list of conditions is on the next slide.
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Conditions

1) D is finite and dense.

DOES EXIST. The domain is ∅. Dense vacously.

2) D is finite and dense and has ≥ 2 elements.
DOES NOT EXIST. Since |D| ≥ 2 let x < y be in D. Then there
exists z ∈ D, x < z < y . Then there is a point between x and z
and between z and y . Keep doing this. D is infinite.

3) D is infinite and not dense
DOES EXIST: Z.
4) D infinite, has min, has max, and is dense.
DOES EXIST: [0, 1].

5) D infinite, has min, has max, and is NOT dense.
DOES EXIST: {−1,−1
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1
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Sets



Set Operations

A,B,U are all sets. U is the universe we are in (e.g., R).

1. A ∪ B = {x : x ∈ A ∨ x ∈ B}.
2. A ∩ B = {x : x ∈ A ∧ x ∈ B}.
3. A = {x ∈ U : x /∈}.

Note that A only makes sense if you have a Universe.
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Empty Set

1. ∅ is the empty set.

1.1 A ∪ ∅ = A
1.2 A ∩ ∅ = ∅.
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Power Set

Definition Of A is a set then the powerset of A, denoted P(A),
is the set of all subsets of A.

If A = {4, 6, 9} then
P(A) is

{∅, {4}, {6}, {9}, {4, 6}, {4, 9}, {6, 9}, {4, 6, 9}}
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