START RECORDING

Discrete Probability Part 1

CMSC 250

Axiomatic Definitions, Basic Problems with Cards

Informal Definition of Probability

• Probability that blah happens:

possibilities that blah happens

all possibilities

Informal Definition of Probability

• Probability that blah happens:

possibilities that blah happens

all possibilities

• This definition is owed to <u>Andrey Kolmogorov</u>, and assumes *that all possibilities are equally likely!*

• Experiment #1: Tossing the same coin 3 times.

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?
 - Why?
 - Set of different *events*?
 - {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*} (8 of them)
 - Set of events with **no heads**:
 - {*TTT*} (1 of them)

• Hence the answer:
$$\frac{1}{8}$$

1	
3	
1	Something
9	else

- Experiment #1: Tossing the same coin 3 times.
 - What is the probability that I don't get any heads?
 - Why?
 - Set of different events?
 - {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *THT*, *TTH*, *TTT*} (8 of them)
 - Set of events with **no heads**:
 - {*TTT*} (1 of them)
 - Hence the answer: $\frac{1}{8}$

Implicit assumption: all individual outcomes (HHH, HHT, HTH,) are considered equally likely (probability 1/8)

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - $\{(1, 1), (1, 2), \dots, (6, 1)\}$ (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - {(1, 1), (1, 2), ..., (6, 1)} (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$
 - Probability that I hit two= ?

- Experiment #2: I roll two dice.
 - Probability that I hit seven = ?
 - Why?
 - Set of different *events*?
 - {(1, 1), (1, 2), ..., (6, 1)} (36 of them)
 - Set of events where we hit 7.
 - $\{(2,5), (5,2), (3,4), (4,3), (1,6), (6,1)\}$ (6 of them)
 - Hence the answer: $\frac{6}{36} = \frac{1}{6}$
 - Probability that I hit two= ?
 - Same procedure

Poker Practice

• Full deck = 52 cards, 13 of each suit:

Poker Practice

- Full deck = 52 cards, 13 of each suit:
- Flush: 5 cards of the same suit
- What is the probability of getting a flush?

4	4			2 ‡	÷		3 ♣	÷		4 *	• •	5.	• •	6 *	* *	ŀ	7 *	. *	8 * *	*	9 * *	*	10 * *	**	J +	Q ****	K ₽
	•	÷	÷		-1-	÷		*	÷		T-		*	÷	*	•	*	**	*	*	*	**	*	***		.	
			¥		*	Ż		*	Š	7	• •			š	* *	٩ġ	*	Ŧż	•	•		••6	•	ſ Ŧ Ŏ	i • 🔤 🛛	<u> ¶¶∳</u> §	Ŕ***
				2 ♠	۰		3	♠ ♠		4 ∢	•	5 .	• •	6 •	▲ 4 ▲ 4		7 ♠ ♠	*	8 ♠ ♠		9 ♠ ♠ ●		0 ♠ ♠		J		K ♠
		-	¥		Ý	÷		Ŷ	έ	•	•		Þ 🛡	Š	Ÿ (9	Ý	¢Ž	Ý	* • *	Ŭ	• • • •	Ŭ	Í ¥ ¥	r 🏹	ð 💦	K.
	•	¥	•	2 •	*	2	3♥	*	4 S	4	•	5	*	6 •	•••	ĝ	7	•	8		9	•					K K K K K K K K K K K K K K K K K K K
		•	•	2 ◆	•	2	3 ◆	* * *	• •	4	•	5	•	6 + 5	• • • •	9	₹• • •	••	8 • •	•••	9	•					K.

• How many 5-card hands are there?

• How many 5-card hands are there? $\binom{52}{5}$

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...
 - So $4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}$

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5-card hands are flushes?
 - Choose a suit in one of 4 ways...
 - Given suit choose any 5 cards out of 13...
 - So $4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}$
- So, probability of being dealt a flush is

$$\frac{4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}}{\begin{pmatrix} 52 \\ 5 \end{pmatrix}}$$

• Probability of being dealt a flush is

$$\frac{4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}}{\begin{pmatrix} 52 \\ 5 \end{pmatrix}}$$

• Probability of being dealt a flush is

$$\frac{4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}}{\begin{pmatrix} 52 \\ 5 \end{pmatrix}}$$

• How likely is this?

• Probability of being dealt a flush is

$$\frac{4 * \begin{pmatrix} 13 \\ 5 \end{pmatrix}}{\begin{pmatrix} 52 \\ 5 \end{pmatrix}}$$

- How likely is this?
 - Not at all likely: $\approx 0.002 = 0.2\%$ \otimes

- Straights are 5 cards of *consecutive rank*
 - Ace can be <u>either end</u> (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)

- Straights are 5 cards of *consecutive rank*
 - Ace can be <u>either end</u> (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?

- Straights are 5 cards of *consecutive rank*
 - Ace can be <u>either end</u> (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\binom{52}{5}$

- Straights are 5 cards of *consecutive rank*
 - Ace can be *either end* (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\begin{pmatrix} 52\\ 5 \end{pmatrix}$
- To find out the #straights:
 - Pick lower rank in 10 ways (A-10)
 - Pick a suit in 4 ways
 - Pick the 4 subsequent cards **from any suit** in 4⁴ ways

- Straights are 5 cards of *consecutive rank*
 - Ace can be *either end* (high or low)
 - *No wrap-arounds* (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, #possible 5-card hands = $\binom{52}{5}$
- To find out the #straights:
 - Pick lower rank in 10 ways (A-10)
 - Pick a suit in 4 ways
 - Pick a suit in 4 ways Pick the 4 subsequent cards from any suit in 4⁴ ways straight = $\frac{10*4^5}{\binom{52}{5}}$

That's $10 * 4^5$ ways. So, probability of a

• <u>Wikipedia</u> says we're wrong about flushes!

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.
 - How many straight flushes are there?

- <u>Wikipedia</u> says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
 - Hands like these are called straight flushes and Wikipedia does not include them.
 - How many straight flushes are there?
 - 40. Here's why:
 - Pick rank: A through 10 (higher ranks don't allow straights) in 10 ways
 - Pick suit in 4 ways

Probability of Non-Straight Flush...

$$\frac{4 * \binom{13}{5} - 40}{\binom{52}{5}} = 0.001965$$

• This is how Wikipedia defines the probability of a flush. 🙂

Probability of a Straight Flush...

$$\frac{40}{\binom{52}{5}} = 0.0000138517$$
Probability of a Straight Flush...

$$\frac{40}{\binom{52}{5}} = 0.0000138517$$

The expected # hands you need to play to get a straight flush is then $\left[\frac{1}{0.0000138517}\right] = 72,194$

Same Caveat for Straights

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

$$\frac{10*4^5-40}{\binom{52}{5}} = 0.003925$$

Same Caveat

• From the #straights we computed we will have to subtract the 40 possible straight flushes to get...

$$\frac{10*4^5 - 40}{\binom{52}{5}} = 0.003925 > 0.001965 = \text{probability of flush}$$

• Flushes, being more rare, beat straights in poker.

• Try to calculate the probability of a pair!

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.
 - 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways.
 - 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:
 - 1. First choose rank in 13 ways.
 - 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways. Numerator: 13 ×
 - 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways. $\binom{50}{3}$

Numerator: $13 \times 6 \times \binom{50}{2}$

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
 - The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator: 1. First choose rank in 13 ways. 2. Then, choose two of four suits in $\binom{4}{2} = 6$ ways. 3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways. • So, probability = $\frac{13 \times 6 \times \binom{50}{3}}{\binom{52}{5}}$

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:

No

Yes

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:

Don't Count Better Hands!

- In the computation before, we included:
 - 2-of-a-kind
 - 3-of-a-kind
 - 4-of-a-kind
 - Full House

Don't Count Better Hands!

- In the computation before, we included:
 - 2-of-a-kind
 - 3-of-a-kind
 - 4-of-a-kind
 - Full House
- To properly compute, we would have to subtract all better hands possible with at least one pair.

Joint Probability

 The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
 - $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
 - $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
 - P(A, B) (One sees this a lot in Physics books)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
 - $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
 - *P*(*A*, *B*) (One sees this a lot in Physics books)
 - *P(AB)* (Perhaps most convenient, therefore most common)

• Probability that the first coin toss is heads and the second coin toss is tails

• Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
 - # outcomes of die roll is 6
 - # outcomes where first die is at most 2 is 2
 - Hence, probability of first die roll being at most 2 is $\frac{1}{3}$

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
 - # outcomes of die roll is 6
 - # outcomes where first die is at most 2 is 2
 - Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
 - Similarly, probability of second die roll being 5 or 6 is $\frac{1}{3}$.
 - Hence, probability that both events happen (joint probability) is $\frac{1}{a}$.

- Jason's going to flip a coin and then pick a card from a 52-card deck.
 - Probability that the coin is heads and the card has rank 8?

- Jason's going to flip a coin and then pick a card from a 52-card deck
 - Probability that the coin is heads and the card has rank 8?

$$\frac{1}{2}$$

$$\frac{1}{26}$$

$$\frac{1}{32}$$
 Something else

• This is because $P(coin = H) = \frac{1}{2}$ and $P(card_rank = 8) = \frac{4}{52} = \frac{1}{13}$ • So their joint probability is $\frac{1}{2} \times \frac{1}{13} = \frac{1}{26}$

The Law of Joint Probability

$$P(A \cap B) = P(A) \cdot P(B)$$
$$P(A_1 \cap A_2 \cap \dots \cap A_n) = \prod_{i=1}^n P(A_i)$$

The Law of Joint Probability

$$P(A \cap B) = P(A) \cdot P(B)$$
$$P(A_1 \cap A_2 \cap \dots \cap A_n) = \prod_{i=1}^n P(A_i)$$

• Unfortunately, this "law" is not always applicable!

The Law of Joint Probability

$$P(A \cap B) = P(A) \cdot P(B)$$
$$P(A_1 \cap A_2 \cap \dots \cap A_n) = \prod_{i=1}^n P(A_i)$$

- Unfortunately, this "law" is not always applicable!
- It is applicable only when all the different events A_i are *independent* (sometimes called *marginally independent*) of each other.
- Let's look at an example.

• Probability that a die is even and that it is 2.

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???
 - NO!
 - What is the probability that the die is even and the die is 2?

- Probability that a die is even and that it is 2.
 - Probability that the die is even = $\frac{1}{2}$
 - Probability that the die is two = $\frac{1}{6}$
 - Probability the die is even and the die is two = $\frac{1}{12}$???
 - NO!
 - What is the probability that the die is even and the die is 2?

Set-Theoretic Interpretation

• Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even
- Die roll comes 2

Set-Theoretic Interpretation

• Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even Die roll comes 2

• Since $A \cap B = A$, $P(A \cap B) = P(A) = \frac{1}{6}$

• <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) X (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) \times (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

(probability Jason gets an A) \times (probability Jason gets a B) = $\frac{1}{7} \times \frac{1}{7} = \frac{1}{49}$

• It is **0**. Those two events cannot happen *jointly*!

- <u>The University of Southern North Dakota</u> offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets **both** an A and a G in that course?
 - Clearly, it can't be

- It is **0**. Those two events cannot happen *jointly*!
- Events such as these are called *disjoint* or *mutually disjoint*.

- A = "Jason gets an A in USND's 250"
- G="Jason gets a G in USND's 250"

- A = "Jason gets an A in USND's 250"
- G="Jason gets a G in USND's 250"

- Note that $A \cap G = \emptyset$, so there are no common outcomes.
 - So $P(A \cap G) = 0$

- I have my original die again.

 - Probability that it comes up 1, 2 or $3 = \frac{1}{2}$ Probability that it comes up 3, 4 or $5 = \frac{1}{2}$
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

- I have my original die again.

 - Probability that it comes up 1, 2 or 3 = ¹/₂
 Probability that it comes up 3, 4 or 5 = ¹/₂
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

$$\begin{array}{ccc} \frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \end{array}$$

- I have my original die again.

 - Probability that it comes up 1, 2 or 3 = ¹/₂
 Probability that it comes up 3, 4 or 5 = ¹/₂
 - What is the probability that it comes up 1, 2 or 3 and 3, 4 or 5?

• Note that the only common outcome between the two events is **3**, which can come up only once out of six possibilities.

- Let A = dice comes up 1, 2, or 3
- Let B = dice comes up 3, 4, or 5
- Let C = dice comes up 1, 2, 3, 4, 5 OR 6

- Let A = dice comes up 1, 2, or 3
- Let B = dice comes up 3, 4, or 5
- Let C = dice comes up 1, 2, 3, 4, 5 OR 6

• Then, probability that the dice comes up $3 = \frac{1}{6}$

STOP RECORDING