START

RECORDING

Discrete Probability Part 1

CMSC 250

Axiomatic Definitions, Basic Problems with Cards

Informal Definition of Probability

- Probability that blah happens:
\# possibilities that blah happens
\# all possibilities

Informal Definition of Probability

- Probability that blah happens:
\# possibilities that blah happens
\# all possibilities
- This definition is owed to Andrey Kolmogorov, and assumes that all possibilities are equally likely!

First Examples

- Experiment \#1: Tossing the same coin 3 times.

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?
- Why?

- Set of different events?
- \{HHH,HHT, HTH, HTT, THH,THT,TTH, TTT $\}$ (8 of them)
- Set of events with no heads:
- $\{T T T\}$ (1 of them)
- Hence the answer: $\frac{1}{8}$

First Examples

- Experiment \#1: Tossing the same coin 3 times.
- What is the probability that I don't get any heads?
- Why?

- Set of different events?
- \{HHH, HHT, HTH, HTT , THH,THT,TTH, TTT $\}$ (8 of them)
- Set of events with no heads:
- $\{$ TTT $\}$ (1 of them)
- Hence the answer: $\frac{1}{8} \quad$ Implicit assumption: all individual outcomes (HHH, HHT, HTH,) are considered equally likely (probability 1/8)

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}$ (6 of them)
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}(6$ of them)
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$
- Probability that I hit two= ?

Practice

- Experiment \#2: I roll two dice.
- Probability that I hit seven = ?
- Why?

- Set of different events?
- $\{(1,1),(1,2), \ldots,(6,1)\}$ (36 of them)
- Set of events where we hit 7 .
- $\{(2,5),(5,2),(3,4),(4,3),(1,6),(6,1)\}(6$ of them $)$
- Hence the answer: $\frac{6}{36}=\frac{1}{6}$
- Probability that I hit two= ?
- Same procedure

Poker Practice

- Full deck $=52$ cards, 13 of each suit:

Poker Practice

- Full deck = 52 cards, 13 of each suit:
- Flush: 5 cards of the same suit
- What is the probability of getting a flush?

Probability of a Flush

- How many 5-card hands are there?

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...

Probability of a Flush

- How many 5-card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13 ...

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13 ...
- So 4 * $\binom{13}{5}$

Probability of a Flush

- How many 5 -card hands are there? $\binom{52}{5}$
- How many 5 -card hands are flushes?
- Choose a suit in one of 4 ways...
- Given suit choose any 5 cards out of 13...
- So $4 *\binom{13}{5}$
- So, probability of being dealt a flush is

$$
\frac{4 *\binom{13}{5}}{\binom{52}{5}}
$$

Probability of a Flush

- Probability of being dealt a flush is
$\frac{4 *\binom{13}{5}}{\binom{52}{5}}$

Probability of a Flush

- Probability of being dealt a flush is
$\frac{4 *\binom{13}{5}}{\binom{52}{5}}$
- How likely is this?

Probability of a Flush

- Probability of being dealt a flush is
$\frac{4 *\binom{13}{5}}{\binom{52}{5}}$
- How likely is this?
- Not at all likely: $\approx 0.002=0.2 \%$:

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$
- To find out the \#straights:
- Pick lower rank in 10 ways (A-10)
- Pick a suit in 4 ways
- Pick the 4 subsequent cards from any suit in 4^{4} ways

Likelihood of a Straight

- Straights are 5 cards of consecutive rank
- Ace can be either end (high or low)
- No wrap-arounds (e.g Q K A 2 3, suits don't matter)
- What is the probability that we are dealt a straight?
- As before, \#possible 5-card hands $=\binom{52}{5}$
- To find out the \#straights:
- Pick lower rank in 10 ways (A-10)
- Pick a suit in 4 ways
- Pick the 4 subsequent cards from any suit in 4^{4} ways

That's $10 * 4^{5}$ ways.
So, probability of a
straight $=\frac{10 * 4^{5}}{\binom{52}{5}}$

Caveat on Flushes

- Wikipedia says we're wrong about flushes!

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.
- How many straight flushes are there?

Caveat on Flushes

- Wikipedia says we're wrong about flushes!
- Formally, our flushes included (for example) 3h 4h 5h 6h 7h
- Hands like these are called straight flushes and Wikipedia does not include them.
- How many straight flushes are there?
- 40. Here's why:
- Pick rank: A through 10 (higher ranks don't allow straights) in 10 ways
- Pick suit in 4 ways

Probability of Non-Straight Flush...

$$
\frac{4 *\binom{13}{5}-40}{\binom{52}{5}}=0.001965
$$

- This is how Wikipedia defines the probability of a flush. ©

Probability of a Straight Flush...

$$
\frac{40}{\binom{52}{5}}=0.0000138517
$$

Probability of a Straight Flush...

$$
\frac{40}{\binom{52}{5}}=0.0000138517
$$

The expected \# hands you need to play to get a straight flush is then

$$
\left\lceil\frac{1}{0.0000138517}\right\rceil=72,194
$$

Same Caveat for Straights

- From the \#straights we computed we will have to subtract the 40 possible straight flushes to get...

$$
\frac{10 * 4^{5}-40}{\binom{52}{5}}=0.003925
$$

Same Caveat

- From the \#straights we computed we will have to subtract the 40 possible straight flushes to get...

$$
\frac{10 * 4^{5}-40}{\binom{52}{5}}=0.003925>0.001965=\text { probability of flush }
$$

- Flushes, being more rare, beat straights in poker.

Probability of a Pair

- Try to calculate the probability of a pair!

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.

3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.

- So, probability $=\frac{13 \times 6 \times\binom{ 50}{3}}{\binom{52}{5}}$

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
$13 \times 6 \times\binom{ 50}{3}$

- So, probability $=\frac{\binom{52}{5}}{\text { 2 }}$
 Numerator: $13 \times 6 \times$
 $\binom{50}{3}$

Is this accurate?

Probability of a Pair

- Try to calculate the probability of a pair!
- Perhaps you thought of the problem like this:
- The denominator will be $\binom{52}{5}$ (easy), so let's focus on the numerator:

1. First choose rank in 13 ways.
2. Then, choose two of four suits in $\binom{4}{2}=6$ ways.
3. Then, choose 3 cards out of 50 in $\binom{50}{3}$ ways.
\square Numerator: $13 \times 6 \times$
\square $\binom{50}{3}$

- So, probability $=\frac{13 \times 6 \times\binom{ 50}{3}}{\binom{52}{5}}$ Is this accurate? $\begin{aligned} & \text { Severe } \\ & \text { overcount! }\end{aligned}$

Don't Count Better Hands!

- In the computation before, we included:
- 2-of-a-kind
- 3-of-a-kind
- 4-of-a-kind
- Full House

Don't Count Better Hands!

- In the computation before, we included:
- 2-of-a-kind
- 3-of-a-kind
- 4-of-a-kind
- Full House
- To properly compute, we would have to subtract all better hands possible with at least one pair.

Joint Probability

Joint Probability ("AND" of Two Events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:

Joint Probability ("AND" of Two Events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
- $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)

Joint Probability ("AND" of Two Events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
- $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
- $P(A, B)$ (One sees this a lot in Physics books)

Joint Probability ("AND" of Two Events)

- The probability that two events A and B occur simultaneously is known as the joint probability of A and B and is denoted in a number of ways:
- $P(A \cap B)$ (Most useful from a set-theoretic perspective; we'll be using this)
- $P(A, B)$ (One sees this a lot in Physics books)
- $P(A B)$ (Perhaps most convenient, therefore most common)

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
- \# outcomes of die roll is 6
- \# outcomes where first die is at most 2 is 2
- Hence, probability of first die roll being at most 2 is $\frac{1}{3}$

Calculating Joints

- Probability that the first coin toss is heads and the second coin toss is tails $\frac{1}{2} \times \frac{1}{2}$
- Probability that the first die is at most a 2 and the second one is 5 or 6
- \# outcomes of die roll is 6
- \# outcomes where first die is at most 2 is 2
- Hence, probability of first die roll being at most 2 is $\frac{1}{3}$
- Similarly, probability of second die roll being 5 or 6 is $\frac{1}{3}$.
- Hence, probability that both events happen (joint probability) is $\frac{1}{9}$.

Calculating Joints

- Jason's going to flip a coin and then pick a card from a 52-card deck.
- Probability that the coin is heads and the card has rank 8?

| $\frac{1}{2}$ | $\frac{1}{26}$ | $\frac{1}{32}$ |
| :--- | :--- | :--- | | Something
 else |
| :---: |

Calculating Joints

- Jason's going to flip a coin and then pick a card from a 52-card deck
- Probability that the coin is heads and the card has rank 8?

- This is because $P($ coin $=H)=\frac{1}{2}$ and $P($ card_rank $=8)=\frac{4}{52}=\frac{1}{13}$
- So their joint probability is $\frac{1}{2} \times \frac{1}{13}=\frac{1}{26}$

The Law of Joint Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

The Law of Joint Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

- Unfortunately, this "law" is not always applicable!

The Law of Joint Probability

$$
\begin{aligned}
& P(A \cap B)=P(A) \cdot P(B) \\
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i}\right)
\end{aligned}
$$

- Unfortunately, this "law" is not always applicable!
- It is applicable only when all the different events A_{i} are independent (sometimes called marginally independent) of each other.
- Let's look at an example.

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2.
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???
- NO!
- What is the probability that the die is even and the die is 2 ?

What If The Events Influence Each Other?

- Probability that a die is even and that it is 2 .
- Probability that the die is even $=\frac{1}{2}$
- Probability that the die is two $=\frac{1}{6}$
- Probability the die is even and the die is two $=\frac{1}{12}$???
- NO!
- What is the probability that the die is even and the die is 2 ?

Set-Theoretic Interpretation

- Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even
- Die roll comes 2

Set-Theoretic Interpretation

- Notice that the event A: "Die roll is even" is a superset of the event B: "Die roll comes 2"

- Die roll even
- Die roll comes 2
- Since $A \cap B=A, P(A \cap B)=P(A)=\frac{1}{6}$

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and a G in that course?

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be
(probability Jason gets an A) $X($ probability Jason gets a $B)=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be
(probability Jason gets Af (prow lason aets a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be
(probability Jason gets (prore dason a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$
- It is 0 . Those two events cannot happen jointly!

Calculating Joints

- The University of Southern North Dakota offers a Discrete Mathematics Course where the possible grades are A through G. (No + or -)
- What is the probability that Jason gets both an A and $\mathrm{a} G$ in that course?
- Clearly, it can't be
(probability Jason gets (prow lason gets a B) $=\frac{1}{7} \times \frac{1}{7}=\frac{1}{49}$
- It is 0 . Those two events cannot happen jointly!
- Events such as these are called disjoint or mutually disjoint.

Set-Theoretic Interpretation

- $\mathrm{A}=$ " "Jason gets an A in USND's 250 "
- G="Jason gets a G in USND's 250 "

Set-Theoretic Interpretation

- $\mathrm{A}=$ " "Jason gets an A in USND's 250 "
- G="Jason gets a G in USND's 250 "

- Note that $A \cap G=\emptyset$, so there are no common outcomes.
- So $P(A \cap G)=0$

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

Calculating Joints

- I have my original die again.
- Probability that it comes up 1,2 or $3=\frac{1}{2}$
- Probability that it comes up 3,4 or $5=\frac{1}{2}$
- What is the probability that it comes up 1,2 or 3 and 3,4 or 5 ?

- Note that the only common outcome between the two events is 3 , which can come up only once out of six possibilities.

Set-Theoretic Interpretation

- Let $\mathrm{A}=$ dice comes up 1,2 , or 3
- Let $B=$ dice comes up 3,4 , or 5
- Let $\mathrm{C}=$ dice comes up 1, 2, 3, 4, 5 OR 6

Set-Theoretic Interpretation

- Let $A=$ dice comes up 1,2 , or 3
- Let $B=$ dice comes up 3,4 , or 5
- Let $\mathrm{C}=$ dice comes up $1,2,3,4,5$ OR 6

- Then, probability that the dice comes up $3=\frac{1}{6}$

STOP

RECORDING

