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Discrete Probability Part 2
CMSC 250



Dependent and Independent Events
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Independent Events (informally)

• Two events are independent if one does not influence the other.
• Examples:

• The event E1 = “first coin toss” and E2 = “second coin toss”
• With the same die, the events E1 = “roll 1”, E2 = “roll 2”, E3 = “roll 3”
• Jason flips a coin and then picks a card. 

• Counter-examples:
• E1 = “Die is even”, E2=“Die is 6”
• E1= “Grade in 250”  and “Passing 250”
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Law of Joint Probability (informally)

• Two events are independent if one does not influence the other.
• This definition is a but too informal, so mathematicians tend to avoid it.

• Formally, we define that 𝐴𝐴 and 𝐵𝐵 are independent if

𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)
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Recap: “Disjoint” vs “Independent”

• Friends don’t let friends get confused between “disjoint” and 
“independent”!

Disjoint Independent

Has a set-theoretic interpretation! Has a causality interpretation!

Means that 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 0 Means that 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)
Means that 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃(𝐵𝐵) Means that 𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 −

𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵)
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Disjoint Probability (“OR” of Two Events)

• Jason rolls two dice.
• What is the probability that he rolls a 7 or a 9?
• #Ways to roll a 7 is 6.
• #Ways to roll a 9 is 4: (6, 3), (5, 4), (4, 5), (3, 6)
• #Ways to roll a 7 OR a 9 is then 10.
• Therefore, the probability is  10

36
= 5

18
• Key: Rolling a 7 and a 9 are disjoint events.
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• 52-card deck
• Probability of drawing a face card (J, Q, K) or a heart

• Are these disjoint?
• NO, for example, Queen of hearts

• How big is 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶 ∪ 𝐻𝐻𝐹𝐹𝐹𝐹𝐶𝐶𝐻𝐻𝐻𝐻 (abbrv. 𝐹𝐹, 𝐻𝐻 below)?
• Use law of inclusion / exclusion!

𝐹𝐹 ∪ 𝐻𝐻 = 𝐹𝐹 + 𝐻𝐻 − 𝐹𝐹 ∩ 𝐻𝐻 = 12 + 13 − 𝟑𝟑 = 𝟐𝟐𝟐𝟐

• So probability = 22
52

= 11
26

.



Alternative Viewpoint

• 𝑃𝑃 𝐹𝐹 = 12
52
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Alternative Viewpoint

• 𝑃𝑃 𝐹𝐹 = 12
52

• 𝑃𝑃 𝐻𝐻 = 13
52

• 𝑃𝑃 𝐹𝐹 ∩ 𝐻𝐻 = 3
52

• 𝑃𝑃 𝐹𝐹 ∪ 𝐻𝐻 = 𝑃𝑃 𝐹𝐹 + 𝑃𝑃 𝐻𝐻 − 𝑃𝑃(𝐹𝐹 ∩ 𝐻𝐻)

• We can also do:
13 
4

4
1

4
2 ∗ 43

52
5



Probability of Unions

𝑃𝑃 𝐴𝐴 ∪ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 + 𝑃𝑃 𝐵𝐵 − 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵
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• If A and B are disjoint, we have
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Conditional Probability

• If A occurs, then is B  
a) More likely?
b) Equally likely?
c) Less likely?

• Any of these could happen, it depends on the relationship
between A and B.

𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵 𝐴𝐴 𝐵𝐵
OR OR OR …



Examples

• We roll two dice
• Event A = “Sum of the dice 𝑆𝑆 ≡ 0 (𝑚𝑚𝑚𝑚𝐶𝐶 4)” 

• Note that 𝑃𝑃 𝐴𝐴 = 9
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multiple of 4:
 (1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)
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• What is the probability of A given B?
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• As discussed, 𝑃𝑃 𝐴𝐴 = 9
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= 1
4

• However, once B occurs, instead of 36 outcomes, we now have… 6 
outcomes.

• Only 2 of them are outcomes that correspond to A.

• Therefore, the probability of A given B is  
2
6

= 1
3
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Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8”
• Event B = “ First die is 4” 

• If B happens, what is your intuition about the probability of A?

Go up Go down Stay the 
same

Unknown to 
science

Let’s see if 
your 
intuition 
was correct!
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Examples

• We once again two roll dice
• Event A = “Sum of the dice is ≥ 8” 𝑃𝑃 𝐴𝐴 = 15

36
= 5

12

• Event B = “First die is a 4” 𝑃𝑃 𝐵𝐵 = 1
6

• Prob of A given B = Prob second dice is 4, 5, or 6 = 3
6

= 1
2

> 5
12

Go up Go down Stay the 
same

Unknown to 
science

By just 1
12

…



Conditional Probability

• Let 𝛢𝛢,𝛣𝛣 be two events. The conditional probability of A given B, 
denoted 𝑃𝑃(𝐴𝐴 | 𝐵𝐵) is defined as follows:

𝑃𝑃 𝐴𝐴 𝐵𝐵 =
𝑃𝑃(𝐴𝐴 ∩ 𝐵𝐵)
𝑃𝑃(𝐵𝐵)



Re-Thinking Independent Events

• Alternative definition of independent events: Two events A and B 
will be called marginally independent, or just independent for short, if 
and only if

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴)



Re-Thinking Independent Events

• Alternative definition of independent events: Two events A and B 
will be called marginally independent, or just independent for short, if 
and only if

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐴𝐴)

• Applying the definition of 𝑃𝑃(𝐴𝐴|𝐵𝐵) we have: 
• 𝑃𝑃(𝐴𝐴∩𝐵𝐵)

𝑃𝑃(𝐵𝐵)
= 𝑃𝑃 𝐴𝐴 ⇒ 𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 𝑃𝑃 𝐴𝐴 ⋅ 𝑃𝑃(𝐵𝐵), which is a relationship we had 

reached earlier when discussing the joint probability.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• I pick either one of them with probability 1
2
 and roll it.

• What’s the probability that the die comes up 6? (work on this yourselves 
NOW)



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• I pick either one of them with probability 1

2
• What’s the probability that the die comes up 6? (work on this yourselves NOW)

𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6 = 𝑃𝑃(𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6,𝐷𝐷𝐷𝐷𝐹𝐹 = 6) + 𝑃𝑃(𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6,𝐷𝐷𝐷𝐷𝐹𝐹 = 10) =
 

= 𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6 𝐷𝐷𝐷𝐷𝐹𝐹 = 6  ×  𝑃𝑃 𝐷𝐷𝐷𝐷𝐹𝐹 = 6 + 𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6|𝐷𝐷𝐷𝐷𝐹𝐹 = 10  ×  𝑃𝑃 𝐷𝐷𝐷𝐷𝐹𝐹 = 10
=
 

=
1
6

×
1
2

+
1

10
×

1
2

=
1

12
+

1
20

=
2

15
≈ 0.1333 …



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9
 and the six-sided die with prob 4

9
.



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9
 and the six-sided die with prob 4

9
.

• Intuitively, will the probability that I come up with a 6…



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9
 and the six-sided die with prob 4

9
.

• Intuitively, will the probability that I come up with a 6…

Go up Go down Stay the 
same



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.
• Now we change the problem so that we pick the ten-sided die with prob
5
9
 and the six-sided die with prob 4

9
.

• Intuitively, will the probability that I come up with a 6…

Go up Go down Stay the 
same

Let’s see if your 
intuition was 
correct!



Complex Probabilities

• Suppose that I have two dice: a six-sided one and a ten-sided one.

• Now we change the problem so that we pick the ten-sided die with prob 5
9
 and 

the six-sided die with prob 4
9

.
• What’s the probability that I come up with a 6? 

𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6 = 𝑃𝑃(𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6,𝐷𝐷𝐷𝐷𝐹𝐹 = 6) + 𝑃𝑃(𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6,𝐷𝐷𝐷𝐷𝐹𝐹 = 10) =
 

= 𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6 𝐷𝐷𝐷𝐷𝐹𝐹 = 6  ×  𝑃𝑃 𝐷𝐷𝐷𝐷𝐹𝐹 = 6 + 𝑃𝑃 𝑅𝑅𝑚𝑚𝑅𝑅𝑅𝑅 = 6,𝐷𝐷𝐷𝐷𝐹𝐹 = 10  ×  𝑃𝑃 𝐷𝐷𝐷𝐷𝐹𝐹 = 10 =
 

=
1
6

×
4
9

+
1

10
×

5
9

=
2

27
+

1
18

=
7

54
≈ 0.130 < 𝟎𝟎.𝟏𝟏𝟑𝟑𝟑𝟑 



Bayes’ Law

• Suppose A and B are events in a sample space Ω. Then, the following 
is an identity:

𝑃𝑃 𝐴𝐴 𝐵𝐵 = 𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐴𝐴)
𝑃𝑃(𝐵𝐵)

known as Bayes’ Law



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵)  =  𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴)  =  𝑃𝑃(𝐵𝐵)?

Yes No



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵)  =  𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴)  =  𝑃𝑃(𝐵𝐵)?

• Substituting 𝑃𝑃(𝐴𝐴|𝐵𝐵) with 𝑃𝑃(𝐴𝐴) in the formulation of Bayes’ Law, we 
have:

𝑃𝑃 𝐴𝐴 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅
𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 1 =
𝑃𝑃 𝐵𝐵 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵) 

Yes No



Questions

• If 𝑃𝑃(𝐴𝐴|𝐵𝐵)  =  𝑃𝑃(𝐴𝐴), is it the case that 𝑃𝑃(𝐵𝐵|𝐴𝐴)  =  𝑃𝑃(𝐵𝐵)?

• Substituting 𝑃𝑃(𝐴𝐴|𝐵𝐵) with 𝑃𝑃(𝐴𝐴) in the formulation of Bayes’ Law, we 
have:

𝑃𝑃 𝐴𝐴 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅
𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 1 =
𝑃𝑃 𝐵𝐵 𝐴𝐴
𝑃𝑃 𝐵𝐵

⇒ 𝑃𝑃 𝐵𝐵 𝐴𝐴 = 𝑃𝑃(𝐵𝐵) 

Yes No (A ind B) iff (B ind 
A)



Questions

• If 𝑃𝑃 𝐵𝐵 = 0, then is 𝑃𝑃 𝐴𝐴 𝐵𝐵  also 0?

Yes No



Questions

• If 𝑃𝑃 𝐵𝐵 = 0, then is 𝑃𝑃 𝐴𝐴 𝐵𝐵  also 0?

• It is undefined, since 𝑃𝑃 𝐴𝐴 | 𝐵𝐵 = 𝑃𝑃 𝐵𝐵 𝐴𝐴) ⋅ 𝑃𝑃 𝐴𝐴
𝑃𝑃 𝐵𝐵

Yes No



STOP 
RECORDING
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