## START

## RECORDING

# Discrete Probability Part 2 

CMSC 250

Dependent and Independent Events

## Independent Events (informally)

- Two events are independent if one does not influence the other.


## Independent Events (informally)

- Two events are independent if one does not influence the other.
- Examples:
- The event E1 = "first coin toss" and E2 = "second coin toss"
- With the same die, the events E1 = "roll 1", E2 = "roll 2", E3 = "roll 3"
- Jason flips a coin and then picks a card.


## Independent Events (informally)

- Two events are independent if one does not influence the other.
- Examples:
- The event E1 = "first coin toss" and E2 = "second coin toss"
- With the same die, the events E1 = "roll 1", E2 = "roll 2", E3 = "roll 3"
- Jason flips a coin and then picks a card.
- Counter-examples:
- E1 = "Die is even", E2="Die is 6"
- E1= "Grade in 250" and "Passing 250"


## Law of Joint Probability (informally)

- Two events are independent if one does not influence the other.
- This definition is a but too informal, so mathematicians tend to avoid it.


## Law of Joint Probability (informally)

- Two events are independent if one does not influence the other.
- This definition is a but too informal, so mathematicians tend to avoid it.
- Formally, we define that $A$ and $B$ are independent if

$$
P(A \cap B)=P(A) \cdot P(B)
$$

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It rains in Athens, Greece today"
Disjoint
Independent
Both
Neither

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"


## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It rains in Athens, Greece today"

2. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It is sunny in College Park, MD today"

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD todax" Disjoint Independent

Both
Neither

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD today"

3. $E_{1}=$ Die \#1 comes at most 4 $E_{2}=$ Die \#2 comes at least 5

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today"
$E_{2}=$ "It is sunny in College Park, MD todax" Disjoint

3. $E_{1}=$ Die \#1 comes at most 4
$E_{2}=$ Die \#2 comes at least 5


## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD todax" Disjoint

3. $E_{1}=$ Die \#1 comes at most 4 $E_{2}=$ Die \#2 comes at least 5

4. $\begin{aligned} E_{1} & =\text { Student gets a } C \\ E_{2} & =\text { Student passes the class }\end{aligned}$

Disjoint Independent
Both
Neither

## Disjoint or Independent?

1. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It rains in Athens, Greece today"
2. $E_{1}=$ "It rains in College Park, MD today" $E_{2}=$ "It is sunny in College Park, MD todak" Disjoint

3. $E_{1}=$ Die \#1 comes at most 4
$E_{2}=$ Die \#2 comes at least 5


## Recap: "Disjoint" vs "Independent"

- Friends don't let friends get confused between "disjoint" and "independent"!

| Disjoint | Independent |
| :---: | :---: |
| Has a set-theoretic interpretation! | Has a causality interpretation! |
| Means that $P(A \cap B)=0$ | Means that $P(A \cap B)=P(A) \cdot P(B)$ |
| Means that $P(A \cup B)=P(A)+P(B)$ | Means that $P(A \cup B)=P(A)+P(B)-$ |
| $P(A) \cdot P(B)$ |  |

## Disjoint Probability ("OR" of Two Events)

- Jason rolls two dice.
- What is the probability that he rolls a 7 or a 9 ?


## Disjoint Probability ("OR" of Two Events)

- Jason rolls two dice.
- What is the probability that he rolls a 7 or a 9 ?
- \#Ways to roll a 7 is 6 .
- \#Ways to roll a 9 is $4:(6,3),(5,4),(4,5),(3,6)$
- \#Ways to roll a 7 OR a 9 is then 10 .
- Therefore, the probability is $\frac{10}{36}=\frac{5}{18}$
- Key: Rolling a 7 and a 9 are disjoint events.


## Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart


## Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?


## Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card $\cup$ Hearts?


## Disjoint Probability ("OR")

-52-card deck

- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card U Hearts (abbrv. F, H below)?
- Use law of inclusion / exclusion!

$$
|F \cup H|=|F|+|H|-|F \cap H|=12+13-3=22
$$

## Disjoint Probability ("OR")

- 52-card deck
- Probability of drawing a face card (J, Q, K) or a heart
- Are these disjoint?
- NO, for example, Queen of hearts
- How big is Face_Card U Hearts (abbrv. F, H below)?
- Use law of inclusion / exclusion!

$$
|F \cup H|=|F|+|H|-|F \cap H|=12+13-3=22
$$

- So probability $=\frac{22}{52}=\frac{11}{26}$.


## Alternative Viewpoint

- $P(F)=\frac{12}{52}$
- $P(H)=\frac{13}{52}$
- $P(F \cap H)=\frac{3}{52}$
- $P(F \cup H)=P(F)+P(H)-P(F \cap H)$


## Alternative Viewpoint

- $P(F)=\frac{12}{52}$
- $P(H)=\frac{13}{52}$
- $P(F \cap H)=\frac{3}{52}$
- $P(F \cup H)=P(F)+P(H)-P(F \cap H)$
- We can also do:


## Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

## Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- If $A$ and $B$ are independent, we have

$$
P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)
$$

## Probability of Unions

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

- If $A$ and $B$ are independent, we have

$$
P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)
$$

- If $A$ and $B$ are disjoint, we have

$$
P(A \cup B)=P(A)+P(B)
$$

## Probability of Unions of 3 Sets

$$
\begin{aligned}
& P(A \cup B \cup C)= P(A)+ \\
&-P(B)+P(C) \\
&- P(A \cap B)-P(B \cap C)-P(A \cap C) \\
&+P(A \cap B \cap C)
\end{aligned}
$$

## Probability of Unions of 3 Sets

$$
\begin{aligned}
& P(A \cup B \cup C)=P(A)+ P(B)+P(C) \\
&-P(A \cap B)-P(B \cap C)-P(A \cap C) \\
&+P(A \cap B \cap C)
\end{aligned}
$$

- If $A, B$ and $C$ are pairwise independent, we have :

$$
\begin{gathered}
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A) \cdot P(B)-P(B) \cdot P(C)- \\
P(A) \cdot P(C)+P(A \cdot B \cdot C)
\end{gathered}
$$

## Probability of Unions of 3 Sets

$$
\begin{aligned}
& P(A \cup B \cup C)=P(A)+P(B)+P(C) \\
&-P(A \cap B)-P(B \cap C)-P(A \cap C) \\
&+P(A \cap B \cap C)
\end{aligned}
$$

- If $A, B$ and $C$ are pairwise independent, we have :

$$
\begin{gathered}
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A) \cdot P(B)-P(B) \cdot P(C)- \\
P(A) \cdot P(C)+P(A \cdot B \cdot C)
\end{gathered}
$$

- If $\mathrm{A}, \mathrm{B}$ and C are pairwise disjoint (so $A \cap B=A \cap C=B \cap C=\varnothing$, so clearly $A \cap B \cap C=\emptyset$ ), we have

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)
$$

## Conditional Probability and Bayes' Law

## Conditional Probability

- If $A$ occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?


## Conditional Probability

- If A occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?
- Any of these could happen, it depends on the relationship between A and B .


## Conditional Probability

- If A occurs, then is B
a) More likely?
b) Equally likely?
c) Less likely?
- Any of these could happen, it depends on the relationship between $A$ and $B$.


OR


## Examples

- We roll two dice
- Event $\mathrm{A}=$ "Sum of the dice $S \equiv 0(\bmod 4)$ "
- Note that $P(A)=\frac{9}{36}=\frac{1}{4}$, since we have nine rolls of the dice that sum to a multiple of 4:

$$
(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)
$$

## Examples

## - We roll two dice

- Event $\mathrm{A}=$ "Sum of the dice $S \equiv 0(\bmod 4)$ "
- Note that $P(A)=\frac{9}{36}=\frac{1}{4}$, since we have nine rolls of the dice that sum to a multiple of 4:
$(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Event $\mathrm{B}=$ "The first die comes up 3 "
- Note that $P(B)=\frac{6}{36}=\frac{1}{6}$


## Examples

- We roll two dice
- Event $\mathrm{A}=$ "Sum of the dice $S \equiv 0(\bmod 4)$ "
- Note that $P(A)=\frac{9}{36}=\frac{1}{4}$, since we have nine rolls of the dies that sum to a multiple of 4:

$$
(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)
$$

- Event $\mathrm{B}=$ "The first die comes up 3 "
- Note that $P(B)=\frac{6}{36}=\frac{1}{6}$
- What is the probability of $A$ given $B$ ?


## Examples

- What is the probability of $A$ given $B$ ?


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are $(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are ( 1,3 ), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are ( 1,3 ), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$
- Outcomes of $B$ are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$
- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have...


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are $(1,3),(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are (1, 3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5), i(3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
- Only 2 of them are outcomes that correspond to A.


## Examples

- What is the probability of $A$ given $B$ ?
- Outcomes of A are (1, 3), $(2,2),(3,1),(2,6),(3,5),(4,4),(5,3),(6,2),(6,6)$

Outcomes of B are $(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$

- Outcomes of rolling two dice: $(1,1),(1,2), \ldots .,(6,5),(6,6)$
- As discussed, $P(A)=\frac{9}{36}=\frac{1}{4}$
- However, once B occurs, instead of 36 outcomes, we now have... 6 outcomes.
- Only 2 of them are outcomes that correspond to A.
- Therefore, the probability of $A$ given $B$ is $\frac{2}{6}=\frac{1}{3}$


## Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is $\geq 8$ "
- Event $\mathrm{B}=$ " First die is $4 "$


## Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is $\geq 8$ "
- Event $\mathrm{B}=$ " First die is $4 "$
- If $B$ happens, what is your intuition about the probability of $A$ ?


## Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is $\geq 8$ "
- Event $\mathrm{B}=$ " First die is $4 "$
- If $B$ happens, what is your intuition about the probability of $A$ ?

Stay the
same
Unknown to science

## Examples

- We once again two roll dice
- Event $A=$ "Sum of the dice is $\geq 8$ "
- Event $\mathrm{B}=$ " First die is $4 "$
- If $B$ happens, what is your intuition about the probability of $A$ ?

Go up Go down \begin{tabular}{|c|c|}
\hline Stay the <br>
same

 

Unknown to <br>
science
\end{tabular}

Let's see if
your
intuition
was correct!

## Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is $\geq 8 " P(A)=$ ? (work on it)
- Event $\mathrm{B}=$ " First die is $4 "$


## Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is $\geq 8$ " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 "


## Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is $\geq 8$ " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 " $P(B)=\frac{1}{6}$


## Examples

- We once again two roll dice
- Event $\mathrm{A}=$ "Sum of the dice is $\geq 8$ " $P(A)=\frac{15}{36}=\frac{5}{12}$
- Event $\mathrm{B}=$ "First die is a 4 " $P(B)=\frac{1}{6}$
- Prob of $A$ given $B=$ Prob second dice is 4,5 , or $6=\frac{3}{6}=\frac{1}{2}>\frac{5}{12}$

By just $\frac{1}{12}$...


## Conditional Probability

- Let $A, B$ be two events. The conditional probability of A given B , denoted $P(A \mid B)$ is defined as follows:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

## Re-Thinking Independent Events

- Alternative definition of independent events: Two events $A$ and $B$ will be called marginally independent, or just independent for short, if and only if

$$
P(A \mid B)=P(A)
$$

## Re-Thinking Independent Events

- Alternative definition of independent events: Two events $A$ and $B$ will be called marginally independent, or just independent for short, if and only if

$$
P(A \mid B)=P(A)
$$

- Applying the definition of $P(A \mid B)$ we have:
- $\frac{P(A \cap B)}{P(B)}=P(A) \Rightarrow P(A \cap B)=P(A) \cdot P(B)$, which is a relationship we had reached earlier when discussing the joint probability.


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$ and roll it.
- What's the probability that the die comes up 6? (work on this yourselves NOW)


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- I pick either one of them with probability $\frac{1}{2}$
- What's the probability that the die comes up 6? (work on this yourselves NOW)

$$
\begin{gathered}
P(\text { Roll }=6)=P(\text { Roll }=6, \text { Die }=6)+P(\text { Roll }=6, \text { Die }=10)= \\
=P(\text { Roll }=6 \mid \text { Die }=6) \times P(\text { Die }=6)+P(\text { Roll }=6 \mid \text { Die }=10) \times P(\text { Die }=10) \\
= \\
=\frac{1}{6} \times \frac{1}{2}+\frac{1}{10} \times \frac{1}{2}=\frac{1}{12}+\frac{1}{20}=\frac{2}{15} \approx 0.1333 \ldots
\end{gathered}
$$

## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...


## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...



## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- Intuitively, will the probability that I come up with a 6...



## Complex Probabilities

- Suppose that I have two dice: a six-sided one and a ten-sided one.
- Now we change the problem so that we pick the ten-sided die with prob $\frac{5}{9}$ and the six-sided die with prob $\frac{4}{9}$.
- What's the probability that I come up with a 6 ?

$$
\begin{gathered}
P(\text { Roll }=6)=P(\text { Roll }=6, \text { Die }=6)+P(\text { Roll }=6, \text { Die }=10)= \\
=P(\text { Roll }=6 \mid \text { Die }=6) \times P(\text { Die }=6)+P(\text { Roll }=6, \text { Die }=10) \times P(\text { Die }=10)= \\
=\frac{1}{6} \times \frac{4}{9}+\frac{1}{10} \times \frac{5}{9}=\frac{2}{27}+\frac{1}{18}=\frac{7}{54} \approx 0.130<0.133
\end{gathered}
$$

## Bayes' Law

- Suppose $A$ and $B$ are events in a sample space $\Omega$. Then, the following is an identity:

$$
P(A \mid B)=P(B \mid A) \frac{P(A)}{P(B)}
$$

## known as Bayes' Law

## Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$ ?


## Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$ ?

- Substituting $P(A \mid B)$ with $P(A)$ in the formulation of Bayes' Law, we have:

$$
P(A)=P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1=\frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A)=P(B)
$$

## Questions

- If $P(A \mid B)=P(A)$, is it the case that $P(B \mid A)=P(B)$ ?

- Substituting $P(A \mid B)$ with $P(A)$ in the formulation of Bayes' Law, we have:

$$
P(A)=P(B \mid A) \cdot \frac{P(A)}{P(B)} \Rightarrow 1=\frac{P(B \mid A)}{P(B)} \Rightarrow P(B \mid A)=P(B)
$$

## Questions

- If $P(B)=0$, then is $P(A \mid B)$ also 0 ?


## Questions

- If $P(B)=0$, then is $P(A \mid B)$ also 0 ?

- It is undefined, since $P(A \mid B)=P(B \mid A) \cdot \frac{P(A)}{P(B)}$


## STOP

## RECORDING

