The Birthday Paradox

250

What is Your Birthday?

The Birthday Paradox

- What is the minimum number of people who need to be in a room so that the probability that at least two of them have the same birthday is greater than $1 / 2$?
\diamond We assume that the birthdays of the people in the room are independent
$\widehat{\gamma}$ We assume that each birthday is equally likely and that there are 366 days in the year
\diamond To find the probability that at least two of n people in a room have the same birthday, we first calculate the probability p_{n} that these people all have different birthdays
\diamond The probability that at least two people have the same birthday is $1-p_{\mathrm{n}}$
\diamond To find p_{n}, consider the birthdays of the n people in some fixed order
$\stackrel{\wedge}{ }$ Imagine them entering the room one at a time
$\stackrel{\text { We will compute the probability that each successive person entering the room }}{ }$ has a birthday different from those of the people already in the room

The Birthday Paradox

- The birthday of the first person certainly does not match the birthday of someone already in the room
* The probability that the birthday of the second person is different from that of the first person is $365 / 366$ because the second person has a different birthday when he or she was born on one of the 365 days of the year other than the day the first person was born.
- The probability that the third person has a birthday different from both the birthdays of the first and second people given that these two people have different birthdays is 364/366
* In general, the probability that the jth person, with $2 \leq \mathrm{j} \leq 366$, has a birthday different from the birthdays of the $\mathrm{j}-1$ people already in the room given that these j - 1 people have different birthdays is

$$
\frac{366-(j-1)}{366}=\frac{367-j}{366}
$$

The Birthday Paradox

- Because we have assumed that the birthdays of the people in the room are independent, we can conclude that the probability that the n people in the room have different birthdays is

$$
p_{n}=\frac{365}{366} \frac{364}{366} \ldots \frac{367-n}{366}
$$

- It follows that the probability that among n people there are at least two people with the same birthday is

$$
1-p_{n}=1-\left(\frac{365}{366} \frac{364}{366} \ldots \frac{367-n}{366}\right)
$$

- To determine the minimum number of people in the room so that the probability that at least two of them have the same birthday is greater than $1 / 2$, we use the formula we have found for $1-p_{n}$ to compute it for increasing values of n until it becomes greater than $1 / 2$

The Birthday Paradox

- After considerable computation we find that for $n=22,1-p_{n} \approx 0.475$, while for $\mathrm{n}=23,1-\mathrm{p}_{\mathrm{n}} \approx 0.506$
* The minimum number of people needed so that the probability that at least two people have the same birthday is greater than $1 / 2$ is 23

