# START

# RECORDING

# Techniques of proof

Proving *universal / Existential statements true or false* Direct and indirect proof strategies **Direct Proofs** 

#### Basic definitions: Parity

- n is even iff  $n \equiv 0 \pmod{2}$
- n is odd iff  $n \equiv 1 \pmod{2}$
- If  $n \equiv b \pmod{2}$  where  $b \in \{0,1\}$  then b is the parity of n.

• The sum of an even and an odd is odd

- The sum of an even and an odd is odd
  - x even, so  $x \equiv 0 \pmod{2}$
  - y odd, so  $y \equiv 1 \pmod{2}$ 
    - $x + y \equiv 0 + 1 \equiv 1 \pmod{2}$ .

- The sum of an even and an odd is odd
  - x even, so  $x \equiv 0 \pmod{2}$
  - y odd, so  $y \equiv 1 \pmod{2}$ 
    - $x + y \equiv 0 + 1 \equiv 0 \pmod{2}$ .
- If a is an integer, then  $a^2 + a$  is even.

- The sum of an even and an odd is odd
  - x even, so  $x \equiv 0 \pmod{2}$
  - y odd, so  $y \equiv 1 \pmod{2}$ 
    - $x + y \equiv 0 + 1 \equiv 0 \pmod{2}$ .
- If a is an integer, then  $a^2 + a$  is even.
  - a even, so  $a \equiv 0 \pmod{2}$ 
    - $0^2 + 0 \equiv 0 \pmod{2}$
  - a odd, so  $a \equiv 1 \pmod{2}$ 
    - $1^2 + 1 \equiv 0 \pmod{2}$

• If  $x \equiv 1 \pmod{3}$  and  $y \equiv 2 \pmod{3}$  then  $x + y \equiv 0 \pmod{3}$ .

- If  $x \equiv 1 \pmod{3}$  and  $y \equiv 2 \pmod{3}$  then  $x + y \equiv 0 \pmod{3}$ .
- For all  $x, x^2 \equiv 0$  or 1 or 4 (mod 8)
  - (We will use this later.)

- Let's prove the following claims **true**
- 1. The square of an odd integer is also odd.

- Let's prove the following claims **true**
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then  $a^2 + a$  is even.

- Let's prove the following claims **true**
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then  $a^2 + a$  is even.
- 3. If m is an even integer and n is an odd integer,  $m^2 + 3n$  is odd.

- Let's prove the following claims **true**
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then  $a^2 + a$  is even.
- 3. If m is an even integer and n is an odd integer,  $m^2 + 3n$  is odd.
- 4. If n is odd,  $n^2 = 8m + 1$  for some integer m.

- Let's prove the following claims **true**
- 1. The square of an odd integer is also odd.
- 2. If *a* is an integer, then  $a^2 + a$  is even.
- 3. If m is an even integer and n is an odd integer,  $m^2 + 3n$  is odd.
- 4. If n is odd,  $n^2 = 8m + 1$  for some integer m.
- 5. If *a*, *b* are <u>*rationals*</u>,  $(a+b)/_2$  is also rational

## **Proof By Contrapostition**

#### Indirect Proofs of Number Theory

- Sometimes, proving a fact *directly* is tough.
- In such cases, we can attempt an *indirect* proof
- Those are split in two categories
  - 1. Proofs by contraposition
  - 2. Proofs by contradiction
- We will see examples of both.

#### Proof by contraposition

• Applicable to all kinds of statements of type

 $(\forall x \in D)[P(x) \Rightarrow Q(x)]$ 

- Sometimes, proving the implication in this way can be hard.
- On the other hand, proving its *contrapositive*

$$(\forall x \in D) [\sim Q(x) \Rightarrow \sim P(x)]$$

might be easier! ©

• 
$$(\forall a \in \mathbb{Z}) [(a^2 \equiv 0 \pmod{2})) \Rightarrow (a \equiv 0 \pmod{2})]$$

- $(\forall a \in \mathbb{Z})[(a^2 \equiv 0 \pmod{2})) \Rightarrow (a \equiv 0 \pmod{2})]$
- Do we believe this to be true?



- $(\forall a \in \mathbb{Z}) [(a^2 \equiv 0 \pmod{2})) \Rightarrow (a \equiv 0 \pmod{2})]$
- Do we believe this to be true?



• So we should aim for a proof of the affirmative!

- $(\forall a \in \mathbb{Z}) [(a^2 \equiv 0 \pmod{2})) \Rightarrow (a \equiv 0 \pmod{2})]$
- Proving this *directly* is somewhat hard
- On the other hand, the contrapositive

$$(\forall a \in \mathbb{Z})[(a \equiv 1 \pmod{2})) \Rightarrow (a^2 \equiv 1 \pmod{2})]$$

is much easier!

- 1. Suppose a is an odd integer.
- 2. Then,  $a \equiv 1 \pmod{2}$ .
- 3. By algebra,  $a^2 \equiv 1^2 \equiv 1 \pmod{2}$ .
- 4. Done.

1. Contrapositive  $(a \not\equiv 0 \pmod{3}) \Rightarrow$  $(a^2 \not\equiv 0 \pmod{3})$ 

1. Contrapositive  $(a \not\equiv 0 \pmod{3}) \Rightarrow$  $(a^2 \not\equiv 0 \pmod{3})$ 

2. Case 1  $a \equiv 1 \pmod{3}$ 1.  $a^2 \equiv 1^2 \equiv 1 \pmod{3}$ 

1. Contrapositive  $(a \not\equiv 0 \pmod{3}) \Rightarrow$  $(a^2 \not\equiv 0 \pmod{3})$ 

- 2. Case 1  $a \equiv 1 \pmod{3}$ 1.  $a^2 \equiv 1^2 \equiv 1 \pmod{3}$
- 3. Case 2  $a \equiv 2 \pmod{3}$ 1.  $a^2 \equiv 2^2 \equiv 1 \pmod{3}$

1. Contrapositive  $(a \not\equiv 0 \pmod{3}) \Rightarrow$  $(a^2 \not\equiv 0 \pmod{3})$ 

- 2. Case 1  $a \equiv 1 \pmod{3}$ 1.  $a^2 \equiv 1^2 \equiv 1 \pmod{3}$
- 3. Case 2  $a \equiv 2 \pmod{3}$ 1.  $a^2 \equiv 2^2 \equiv 1 \pmod{3}$
- 4. Done.

### Is $(\forall a \in \mathbb{Z})[(a^2 \equiv 0 \pmod{4})) \Rightarrow$ (a ≡ 0 (mod 4))] true?

## Is $(\forall a \in \mathbb{Z})[(a^2 \equiv 0 \pmod{4})) \Rightarrow$ (a ≡ 0 (mod 4))] true?

Proof?

- 1. Contrapositive  $(a \not\equiv 0 \pmod{4}) \Rightarrow (a^2 \not\equiv 0 \pmod{4})$
- 2. Case 1  $a \equiv 1 \pmod{4}$ 1.  $a^2 \equiv 1^2 \equiv 1 \pmod{4}$
- 3. Case 2  $a \equiv 2 \pmod{4}$ 1.  $a^2 \equiv 2^2 \equiv 0 \pmod{4}$
- 4. Fails when  $a \equiv 2 \pmod{4}$

- The most common type of indirect proof is *proof by contradiction*
- Briefly We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).

- The most common type of indirect proof is *proof by contradiction*
- Briefly We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).



- The most common type of indirect proof is *proof by contradiction*
- Briefly We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).



We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

- The most common type of indirect proof is *proof by contradiction*
- Briefly We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).



We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

- The most common type of indirect proof is *proof by contradiction*
- Briefly We want to prove a fact *a*, so we assume ~ *a* and hope that we reach a contradiction (a falsehood).



We follow some classic direct proof sets, and reach a statement that is a **logical contradiction!** (e.g 1 > 2)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

- Proof of contradiction is often used in statements that *look obvious!*
- Example We will prove that there is no greatest integer.

## Proof by contradiction

- Proof of contradiction is often used in statements that *look obvious*!
- Example We will prove that there is no greatest integer.
- Proof
  - 1. Assume that the statement is false. Then, there is a greatest integer.
  - 2. Call the integer assumed in step 1 *N*.
  - 3. By closure of  $\mathbb{Z}$  over addition, we have that  $N + 1 \in \mathbb{Z}$ .
  - 4. But N + 1 > N.
  - 5. Steps 4 and 1 are a contradiction. Therefore, there does **not** exist a greatest integer.

#### Your turn!

• Prove that the square root of any irrational is also irrational

1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}, b \neq 0$  and a, b do not have common factors.

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}, b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- 5.  $a \equiv 0 \pmod{2} \Rightarrow a$  is even

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- 5.  $a \equiv 0 \pmod{2} \Rightarrow a$  is even
- 6. Substituting (2) into (1) yields  $(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- 5.  $a \equiv 0 \pmod{2} \Rightarrow a$  is even
- 6. Substituting (2) into (1) yields  $(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$
- 7.  $2k^2 = b^2 \Rightarrow b = 2j$  for  $j \in \mathbb{Z}$  by previous theorem!

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- 5.  $a \equiv 0 \pmod{2} \Rightarrow a$  is even
- 6. Substituting (2) into (1) yields  $(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$
- 7.  $2k^2 = b^2 \Rightarrow b = 2j$  for  $j \in \mathbb{Z}$  by previous theorem!
- *8.*  $b \equiv 0 \pmod{2} \Rightarrow b$  is even

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}, b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- *5.*  $a \equiv 0 \pmod{2} \Rightarrow a$  is even
- 6. Substituting (2) into (1) yields  $(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$
- 7.  $2k^2 = b^2 \Rightarrow b = 2j$  for  $j \in \mathbb{Z}$  by previous theorem!
- *8.*  $b \equiv 0 \pmod{2} \Rightarrow b$  is even
- 9. So both *a* and *b* are both even, which means that they have common factor of 2.

- 1. Let's assume BY WAY OF CONTRADICTION that  $\sqrt{2}$  is rational.
- 2. So  $\sqrt{2} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- 3. So  $a = \sqrt{2} \cdot b \Rightarrow a^2 = 2b^2$  so  $a^2$  is even (1)
- 4. By the theorem proved before, a = 2k for  $k \in \mathbb{Z} \Rightarrow a \equiv 0 \pmod{2}$
- *5.*  $a \equiv 0 \pmod{2} \Rightarrow a$  is even
- 6. Substituting (2) into (1) yields  $(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$
- 7.  $2k^2 = b^2 \Rightarrow b = 2j$  for  $j \in \mathbb{Z}$  by previous theorem!
- *8.*  $b \equiv 0 \pmod{2} \Rightarrow b$  is even
- 9. So both *a* and *b* are both even, which means that they have common factor of 2.
- 10. Contradiction.

#### Proof of a lemma

• Proof (via contraposition) We prove the contrapositive, i.e

#### If $a^2$ is a multiple of 5, then so is a $\Leftrightarrow$ If a is not a multiple of 5, then $a^2$ isn't one either.

## Proof of lemma

• Proof (by contraposition) We prove that

if a is not a multiple of 5, then  $a^2$  isn't one either.

## Proof of lemma

• Proof (by contraposition) We prove that

if a is not a multiple of 5, then  $a^2$  isn't one either.

1. Suppose that  $a \in \mathbb{Z}$  is **not** a multiple of 5.

## Proof of lemma

• Proof (by contraposition) We prove that

if a is not a multiple of 5, then  $a^2$  isn't one either.

- 1. Suppose that  $a \in \mathbb{Z}$  is **not** a multiple of 5.
- 2. Then, one of the following has to be the case (all  $\equiv$  are mod 5)
  - $a \equiv 1 \Rightarrow a^2 \equiv 1^2 \equiv 1 \not\equiv 0$
  - $a \equiv 2 \Rightarrow a^2 \equiv 4 \equiv 4 \not\equiv 0$
  - $a \equiv 3 \Rightarrow a^2 \equiv 3^2 \equiv 4 \not\equiv 0$
  - $a \equiv 4 \Rightarrow a^2 \equiv 16 \equiv 1 \not\equiv 0$

## Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that  $\sqrt{5}$  is rational.
- So  $\sqrt{5} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}$ ,  $b \neq 0$  and a, b do not have common factors.
- So  $a = \sqrt{5} \cdot b \Rightarrow a^2 = 5b^2$  so  $a^2 = 5k$  for  $k \in \mathbb{Z}(1)$

## Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that  $\sqrt{5}$  is rational.
- So  $\sqrt{5} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}, b \neq 0$  and a, b do not have common factors.
- So  $a = \sqrt{5} \cdot b \Rightarrow a^2 = 5b^2$  so  $a^2 = 5k$  for  $k \in \mathbb{Z}(1)$
- By the previous theorem, this means that a = 5j for  $j \in \mathbb{Z}$
- So  $a \equiv 0 \pmod{5}$  (2)

## Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that  $\sqrt{5}$  is rational.
- So  $\sqrt{5} = \frac{a}{b}$ ,  $a, b \in \mathbb{Z}, b \neq 0$  and a, b do not have common factors.
- So  $a = \sqrt{5} \cdot b \Rightarrow a^2 = 5b^2$  so  $a^2 = 5k$  for  $k \in \mathbb{Z}(1)$
- By the previous theorem, this means that a = 5j for  $j \in \mathbb{Z}$
- So  $a \equiv 0 \pmod{5}$  (2)
- Substituting (2) into (1) yields  $0^2 \pmod{5} \equiv 5b^2 \Rightarrow b^2 \equiv 0 \pmod{5} \Rightarrow b^2 \equiv 5x$  for  $x \in \mathbb{Z} \Rightarrow b = 5y$  for  $y \in \mathbb{Z}$  by same theorem
- So, b is  $b^2 \equiv 0 \pmod{5}$
- Since *a* and *b* are both multiples of 5, they have a common factor of 5.
- Contradiction.

## Proof of $\sqrt{7} \notin \mathbb{Q}$ with Euclidean Argument

• Why can we **not** use this machinery to prove that  $\sqrt{4}$  is irrational (which is wrong anyway)?

- Why can we **not** use this machinery to prove that  $\sqrt{4}$  is irrational (which is wrong anyway)?
- Observe that to prove  $\sqrt{2}$  irrational, we needed lemma  $x^2$  even  $\Rightarrow x$  even

- Why can we **not** use this machinery to prove that  $\sqrt{4}$  is irrational (which is wrong anyway)?
- Observe that to prove  $\sqrt{2}$  irrational, we needed lemma  $x^2$  even  $\Rightarrow x$  even.
- To prove  $\sqrt{3}$  irrational, we need lemma  $x^2$  mult  $3 \Rightarrow x$  mult 3

- Why can we **not** use this machinery to prove that  $\sqrt{4}$  is irrational (which is wrong anyway)?
- Observe that to prove  $\sqrt{2}$  irrational, we needed lemma  $x^2$  even  $\Rightarrow x$  even.
- To prove  $\sqrt{3}$  irrational, we need lemma  $x^2$  mult  $3 \Rightarrow x$  mult 3
- To prove  $\sqrt{4}$  irrational, we would need lemma  $x^2$  mult  $4 \Rightarrow x$  mult 4.

- Why can we **not** use this machinery to prove that  $\sqrt{4}$  is irrational (which is wrong anyway)?
- Observe that to prove  $\sqrt{2}$  irrational, we needed lemma  $x^2$  even  $\Rightarrow x$  even.
- To prove  $\sqrt{3}$  irrational, we need lemma  $x^2$  mult  $3 \Rightarrow x$  mult 3
- To prove  $\sqrt{4}$  irrational, we would need lemma  $x^2$  mult  $4 \Rightarrow x$  mult 4.
- But this is **not** actually true! Counter-example x = 2

Enroute to an alternative proof that numbers are irrational

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
  - 15
  - 22
  - 29
  - 121
  - 1024
  - 1027

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
  - $15 = 3 \times 5 = 3^1 \times 5^1$
  - $22 = 2^1 \times 11^1$
  - $29 = 29^1$
  - $121 = 11^2$
  - $1024 = 2^{10}$
  - $1027 = 13 \times 79 = 13^1 \times 79^1$

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
  - $15 = 3 \times 5 = 3^1 \times 5^1$
  - $22 = 2^1 \times 11^1$
  - $29 = 29^1$
  - $121 = 11^2$
  - $1024 = 2^{10}$
  - $1027 = 13 \times 79 = 13^1 \times 79^1$

What do all of these factors have in common?

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
  - $15 = 3 \times 5 = 3^1 \times 5^1$
  - $22 = 2^1 \times 11^1$
  - $29 = 29^1$
  - $121 = 11^2$
  - $1024 = 2^{10}$
  - $1027 = 13 \times 79 = 13^1 \times 79^1$ \_\_\_\_

What do all of these factors have in common?

They are all primes!

## A result

• Every positive integer  $n \ge 2$  can be factored into a product of **exclusively** prime numbers

## A result

- Every positive integer  $n \ge 2$  can be factored into a product of **exclusively** prime numbers
- Moreover, this representation is *unique*, up to re-ordering of the individual factors in the product! For example
  - $15 = 3^1 \times 5^1 = 5^1 \times 3^1$

• 
$$1400 = 2^3 \times 5^2 \times 7^1 = 2^3 \times 7^1 \times 5^2 =$$
  
=  $5^2 \times 2^3 \times 7^1 = 5^2 \times 7^1 \times 2^3 =$   
=  $7^1 \times 2^3 \times 5^2 = 7^1 \times 5^2 \times 2^3$ 

#### **Unique Prime Factorization Theorem**

• Every number  $n \in \mathbb{N}^{\geq 2}$  can be **uniquely** factored into a product of prime numbers  $p_1, p_2, \dots, p_k$  like so

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

#### Unique Prime Factorization Theorem

• Every number  $n \in \mathbb{N}^{\geq 2}$  can be **uniquely** factored into a product of prime numbers  $p_1, p_2, \dots, p_k$  like so

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

• Proving existence is easy (Formally needs induction which we will do later in this course)

#### Unique Prime Factorization Theorem

• Every number  $n \in \mathbb{N}^{\geq 2}$  can be **uniquely** factored into a product of prime numbers  $p_1, p_2, \dots, p_k$  like so

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_k^{e_k}, \qquad e_i \in \mathbb{N}^{>0}$$

- Proving existence is easy (Formally needs induction which we will do later in this course)
- Proving uniqueness is harder

## Examples of "uniqueness"

- By "uniqueness" we mean that the product is unique up to reordering of the factors  $p_i^{e_i}$ .
- Examples
  - $30 = 3^1 \times 2^1 \times 5^1 = 5^1 \times 2^1 \times 3^1$
  - $88 = 2^3 \times 11^1 = 11^1 \times 2^3$
  - $1026 = 2^1 \times 3^3 \times 19^1 = 2^1 \times 19^1 \times 3^3 = 19^1 \times 2^1 \times 3^3 = 3^3 \times 19^1 \times 2^1$

#### A necessary lemma

Set of primes

• Claim: Let  $p \in \mathbf{P}$ ,  $a \in \mathbb{N}$ . Then, if  $p \mid a$ , then  $p \nmid (a + 1)$ .

## A necessary lemma

Set of primes

- Claim: Let  $p \in \mathbf{P}$ ,  $a \in \mathbb{N}$ . Then, if  $p \mid a$ , then  $p \nmid (a + 1)$ .
- Proof:
  - Assume that  $p \mid (a + 1)$ . Then, this means that  $(\exists r_1 \in \mathbb{Z})[a + 1 = p \cdot r_1]$  (I)
  - We already know that  $p \mid a \Rightarrow (\exists r_2 \in \mathbb{Z})[a = p \cdot r_2]$  (II)
  - Substituting (II) into (I) yields:  $p \cdot r_2 + 1 = p \cdot r_1 \Rightarrow p(r_1 r_2) = 1 \Rightarrow p | 1$  which is a contradiction. Therefore,  $p \nmid (a + 1)$ .

# STOP RECORDING