START

RECORDING

Techniques of proof

Proving universal/ Existential statements true or false Direct and indirect proof strategies

Direct Proofs

Basic definitions: Parity

- n is even iff $n \equiv 0(\bmod 2)$
- n is odd iff $n \equiv 1(\bmod 2)$
- If $n \equiv b(\bmod 2)$ where $b \in\{0,1\}$ then b is the parity of n.

Statements of claims / theorems

- The sum of an even and an odd is odd

Statements of claims / theorems

- The sum of an even and an odd is odd
- x even, so $x \equiv 0(\bmod 2)$
- y odd, so $y \equiv 1(\bmod 2)$
$\cdot x+y \equiv 0+1 \equiv 1(\bmod 2)$.

Statements of claims / theorems

- The sum of an even and an odd is odd
- x even, so $x \equiv 0(\bmod 2)$
- y odd, so $y \equiv 1(\bmod 2)$
- $x+y \equiv 0+1 \equiv 0(\bmod 2)$.
- If a is an integer, then $a^{2}+a$ is even.

Statements of claims / theorems

- The sum of an even and an odd is odd
- x even, so $x \equiv 0(\bmod 2)$
- y odd, so $y \equiv 1(\bmod 2)$
- $x+y \equiv 0+1 \equiv 0(\bmod 2)$.
- If a is an integer, then $a^{2}+a$ is even.
- a even, so $a \equiv 0(\bmod 2)$
- $0^{2}+0 \equiv 0(\bmod 2)$
- a odd, so $a \equiv 1(\bmod 2)$
- $1^{2}+1 \equiv 0(\bmod 2)$

Statements of claims / theorems

- If $x \equiv 1(\bmod 3)$ and $y \equiv 2(\bmod 3)$ then $x+y \equiv 0(\bmod 3)$.

Statements of claims / theorems

- If $x \equiv 1(\bmod 3)$ and $y \equiv 2(\bmod 3)$ then $x+y \equiv 0(\bmod 3)$.
- For all $x, x^{2} \equiv 0$ or 1 or $4(\bmod 8)$
- (We will use this later.)

Here's some more!

- Let's prove the following claims true

1. The square of an odd integer is also odd.

Here's some more!

- Let's prove the following claims true

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.

Here's some more!

- Let's prove the following claims true

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.

Here's some more!

- Let's prove the following claims true

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.
4. If n is odd, $n^{2}=8 m+1$ for some integer m.

Here's some more!

- Let's prove the following claims true

1. The square of an odd integer is also odd.
2. If a is an integer, then $a^{2}+a$ is even.
3. If m is an even integer and n is an odd integer, $m^{2}+3 n$ is odd.
4. If n is odd, $n^{2}=8 m+1$ for some integer m.
5. If a, b are rationals, ${ }^{(a+b)} / 2$ is also rational

Proof By Contrapostition

Indirect Proofs of Number Theory

- Sometimes, proving a fact directly is tough.
- In such cases, we can attempt an indirect proof
- Those are split in two categories

1. Proofs by contraposition
2. Proofs by contradiction

- We will see examples of both.

Proof by contraposition

- Applicable to all kinds of statements of type

$$
(\forall x \in D)[P(x) \Rightarrow Q(x)]
$$

- Sometimes, proving the implication in this way can be hard.
- On the other hand, proving its contrapositive

$$
(\forall x \in D)[\sim Q(x) \Rightarrow \sim P(x)]
$$

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 2)\right) \Rightarrow(a \equiv 0(\bmod 2))\right]$

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 2)\right) \Rightarrow(a \equiv 0(\bmod 2))\right]$
- Do we believe this to be true?

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 2)\right) \Rightarrow(a \equiv 0(\bmod 2))\right]$
- Do we believe this to be true?

- So we should aim for a proof of the affirmative!

Examples

- $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 2)\right) \Rightarrow(a \equiv 0(\bmod 2))\right]$
- Proving this directly is somewhat hard
- On the other hand, the contrapositive

$$
(\forall a \in \mathbb{Z})\left[(a \equiv 1(\bmod 2)) \Rightarrow\left(a^{2} \equiv 1(\bmod 2)\right)\right]
$$

is much easier!

Proof that $(\forall a \in \mathbb{Z})[(a \equiv 1(\bmod 2)) \Rightarrow$
 $\left.\left(a^{2} \equiv 1(\bmod 2)\right)\right]$

1. Suppose a is an odd integer.
2. Then, $a \equiv 1(\bmod 2)$.
3. By algebra, $a^{2} \equiv 1^{2} \equiv 1(\bmod 2)$.
4. Done.

Proof that $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 3)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 3))]$

1. Contrapositive $(a \not \equiv 0(\bmod 3)) \Rightarrow$

$$
\left(a^{2} \not \equiv 0(\bmod 3)\right)
$$

Proof that $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 3)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 3))]$

1. Contrapositive $(a \not \equiv 0(\bmod 3)) \Rightarrow$
$\left(a^{2} \not \equiv 0(\bmod 3)\right)$
2. Case $1 a \equiv 1(\bmod 3)$
3. $a^{2} \equiv 1^{2} \equiv 1(\bmod 3)$

Proof that $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 3)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 3))]$

1. Contrapositive $(a \not \equiv 0(\bmod 3)) \Rightarrow$
$\left(a^{2} \not \equiv 0(\bmod 3)\right)$
2. Case $1 a \equiv 1(\bmod 3)$
3. $a^{2} \equiv 1^{2} \equiv 1(\bmod 3)$
4. Case $2 a \equiv 2(\bmod 3)$
5. $a^{2} \equiv 2^{2} \equiv 1(\bmod 3)$

Proof that $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 3)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 3))]$

1. Contrapositive $(a \not \equiv 0(\bmod 3)) \Rightarrow$

$$
\left(a^{2} \not \equiv 0(\bmod 3)\right)
$$

2. Case $1 a \equiv 1(\bmod 3)$
3. $a^{2} \equiv 1^{2} \equiv 1(\bmod 3)$
4. Case $2 a \equiv 2(\bmod 3)$

$$
\text { 1. } a^{2} \equiv 2^{2} \equiv 1(\bmod 3)
$$

4. Done.

Is $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 4)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 4))]$ true?

Is $(\forall a \in \mathbb{Z})\left[\left(a^{2} \equiv 0(\bmod 4)\right) \Rightarrow\right.$ $(a \equiv 0(\bmod 4))]$ true?

Proof?

1. Contrapositive $(a \not \equiv 0(\bmod 4)) \Rightarrow\left(a^{2} \not \equiv 0(\bmod 4)\right)$
2. Case $1 a \equiv 1(\bmod 4)$
3. $a^{2} \equiv 1^{2} \equiv 1(\bmod 4)$
4. Case $2 a \equiv 2(\bmod 4)$
5. $a^{2} \equiv 2^{2} \equiv 0(\bmod 4)$
6. Fails when $a \equiv 2(\bmod 4)$

Proof by Contradiction

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly We want to prove a fact a, so we assume $\sim a$ and hope that we reach a contradiction (a falsehood).

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

This is a so-called "conditional world" It's a "version" of our world where we assume $\sim a$.

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g $1>2$)

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g $1>2$)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

Proof by contradiction

- The most common type of indirect proof is proof by contradiction
- Briefly We want to prove a fact a, so we assume $\sim \boldsymbol{a}$ and hope that we reach a contradiction (a falsehood).

We follow some classic direct proof sets, and reach a statement that is a logical contradiction! (e.g $1>2$)

This means that this conditional world cannot possibly exist! The only "possible" worlds have a in it.

Proof by contradiction

- Proof of contradiction is often used in statements that look obvious!
- Example We will prove that there is no greatest integer.

Proof by contradiction

- Proof of contradiction is often used in statements that look obvious!
- Example We will prove that there is no greatest integer.
- Proof

1. Assume that the statement is false. Then, there is a greatest integer.
2. Call the integer assumed in step 1 N .
3. By closure of \mathbb{Z} over addition, we have that $N+1 \in \mathbb{Z}$.
4. But $N+1>N$.
5. Steps 4 and 1 are a contradiction. Therefore, there does not exist a greatest integer.

Your turn!

- Prove that the square root of any irrational is also irrational

A historical proof by contradiction $\sqrt{2}$ is irrational

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even
6. Substituting (2) into (1) yields $(2 k)^{2}=2 b^{2} \Rightarrow 4 k^{2}=2 b^{2} \Rightarrow 2 k^{2}=b^{2}$

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even
6. Substituting (2) into (1) yields $(2 k)^{2}=2 b^{2} \Rightarrow 4 k^{2}=2 b^{2} \Rightarrow 2 k^{2}=b^{2}$
7. $2 k^{2}=b^{2} \Rightarrow b=2 j$ for $j \in \mathbb{Z}$ by previous theorem!

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even
6. Substituting (2) into (1) yields $(2 k)^{2}=2 b^{2} \Rightarrow 4 k^{2}=2 b^{2} \Rightarrow 2 k^{2}=b^{2}$
7. $2 k^{2}=b^{2} \Rightarrow b=2 j$ for $j \in \mathbb{Z}$ by previous theorem!
8. $b \equiv 0(\bmod 2) \Rightarrow b$ is even

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even
6. Substituting (2) into (1) yields $(2 k)^{2}=2 b^{2} \Rightarrow 4 k^{2}=2 b^{2} \Rightarrow 2 k^{2}=b^{2}$
7. $2 k^{2}=b^{2} \Rightarrow b=2 j$ for $j \in \mathbb{Z}$ by previous theorem!
8. $b \equiv 0(\bmod 2) \Rightarrow b$ is even
9. So both a and b are both even, which means that they have common factor of 2.

A historical proof by contradiction $\sqrt{2}$ is irrational

1. Let's assume BY WAY OF CONTRADICTION that $\sqrt{2}$ is rational.
2. So $\sqrt{2}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
3. So $a=\sqrt{2} \cdot b \Rightarrow a^{2}=2 b^{2}$ so a^{2} is even (1)
4. By the theorem proved before, $a=2 k$ for $k \in \mathbb{Z} \Rightarrow a \equiv 0(\bmod 2)(2)$
5. $a \equiv 0(\bmod 2) \Rightarrow a$ is even
6. Substituting (2) into (1) yields $(2 k)^{2}=2 b^{2} \Rightarrow 4 k^{2}=2 b^{2} \Rightarrow 2 k^{2}=b^{2}$
7. $2 k^{2}=b^{2} \Rightarrow b=2 j$ for $j \in \mathbb{Z}$ by previous theorem!
8. $b \equiv 0(\bmod 2) \Rightarrow b$ is even
9. So both a and b are both even, which means that they have common factor of 2.
10. Contradiction.

Proof of a lemma

- Proof (via contraposition) We prove the contrapositive, i.e

If a^{2} is a multiple of 5 , then so is a
 \Leftrightarrow

If a is not a multiple of 5 , then a^{2} isn't one either.

Proof of lemma

- Proof (by contraposition) We prove that if a is not a multiple of 5 , then a^{2} isn't one either.

Proof of lemma

- Proof (by contraposition) We prove that

1. Suppose that $a \in \mathbb{Z}$ is not a multiple of 5 .

Proof of lemma

- Proof (by contraposition) We prove that

$$
\text { if } a \text { is not a multiple of 5, then } a^{2} \text { isn't one either. }
$$

1. Suppose that $a \in \mathbb{Z}$ is not a multiple of 5 .
2. Then, one of the following has to be the case (all \equiv are $\bmod 5$)

- $a \equiv 1 \Rightarrow a^{2} \equiv 1^{2} \equiv 1 \not \equiv 0$
- $a \equiv 2 \Rightarrow a^{2} \equiv 4 \equiv 4 \not \equiv 0$
- $a \equiv 3 \Rightarrow a^{2} \equiv 3^{2} \equiv 4 \not \equiv 0$
- $a \equiv 4 \Rightarrow a^{2} \equiv 16 \equiv 1 \not \equiv 0$

Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that $\sqrt{5}$ is rational.
- So $\sqrt{5}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- So $a=\sqrt{5} \cdot b \Rightarrow a^{2}=5 b^{2}$ so $a^{2}=5 k$ for $k \in \mathbb{Z}(1)$

Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that $\sqrt{5}$ is rational.
- So $\sqrt{5}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- So $a=\sqrt{5} \cdot b \Rightarrow a^{2}=5 b^{2}$ so $a^{2}=5 k$ for $k \in \mathbb{Z}(1)$
- By the previous theorem, this means that $a=5 \mathrm{j}$ for $\mathrm{j} \in \mathbb{Z}$
- So $a \equiv 0(\bmod 5)(2)$

Adjustment: Proof that $\sqrt{5}$ is irrational

- Let's assume BY WAY OF CONTRADICTION that $\sqrt{5}$ is rational.
- So $\sqrt{5}=\frac{a}{b}, a, b \in \mathbb{Z}, b \neq 0$ and a, b do not have common factors.
- So $a=\sqrt{5} \cdot b \Rightarrow a^{2}=5 b^{2}$ so $a^{2}=5 k$ for $k \in \mathbb{Z}(1)$
- By the previous theorem, this means that $a=5 \mathrm{j}$ for $\mathrm{j} \in \mathbb{Z}$
- So $a \equiv 0(\bmod 5)(2)$
- Substituting (2) into (1) yields $0^{2}(\bmod 5) \equiv 5 b^{2} \Rightarrow b^{2} \equiv 0(\bmod 5) \Rightarrow$ $b^{2}=5 x$ for $\mathrm{x} \in \mathbb{Z} \Rightarrow b=5 y$ for $y \in \mathbb{Z}$ by same theorem
- So, b is $b^{2} \equiv 0(\bmod 5)$
- Since a and b are both multiples of 5 , they have a common factor of 5 .
- Contradiction.

Proof of $\sqrt{7} \notin \mathbb{Q}$ with Euclidean Argument

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma x^{2} even $\Rightarrow x$ even

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma x^{2} mult $3 \Rightarrow x$ mult 3

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma x^{2} mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma x^{2} mult $4 \Rightarrow x$ mult 4 .

Proof that $\sqrt{4}$ is irrational (???)

- Why can we not use this machinery to prove that $\sqrt{4}$ is irrational (which is wrong anyway)?
- Observe that to prove $\sqrt{2}$ irrational, we needed lemma x^{2} even $\Rightarrow x$ even.
- To prove $\sqrt{3}$ irrational, we need lemma x^{2} mult $3 \Rightarrow x$ mult 3
- To prove $\sqrt{4}$ irrational, we would need lemma x^{2} mult $4 \Rightarrow x$ mult 4 .
- But this is not actually true! Counter-example $x=2$

Enroute to an alternative proof that numbers are irrational

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
- 15
- 22
- 29
- 121
- 1024
- 1027

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$

What do all of these factors have in common?

Exercise

- Please go ahead and find the smallest possible positive factors for the following numbers (excluding the trivial factor 1)
- $15=3 \times 5=3^{1} \times 5^{1}$
- $22=2^{1} \times 11^{1}$
- $29=29^{1}$
- $121=11^{2}$
- $1024=2^{10}$
- $1027=13 \times 79=13^{1} \times 79^{1}$ \qquad

What do all of these factors have in common?

They are all primes!

A result

- Every positive integer $n \geq 2$ can be factored into a product of exclusively prime numbers

A result

- Every positive integer $n \geq 2$ can be factored into a product of exclusively prime numbers
- Moreover, this representation is unique, up to re-ordering of the individual factors in the product! For example
- $15=3^{1} \times 5^{1}=5^{1} \times 3^{1}$
- $1400=2^{3} \times 5^{2} \times 7^{1}=2^{3} \times 7^{1} \times 5^{2}=$

$$
\begin{gathered}
=5^{2} \times 2^{3} \times 7^{1}=5^{2} \times 7^{1} \times 2^{3}= \\
=7^{1} \times 2^{3} \times 5^{2}=7^{1} \times 5^{2} \times 2^{3}
\end{gathered}
$$

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{\geq 2}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{\geq 2}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

- Proving existence is easy (Formally needs induction which we will do later in this course)

Unique Prime Factorization Theorem

- Every number $n \in \mathbb{N}^{22}$ can be uniquely factored into a product of prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ like so

$$
n=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdot \ldots \cdot p_{k}^{e_{k}}, \quad e_{i} \in \mathbb{N}^{>0}
$$

- Proving existence is easy (Formally needs induction which we will do later in this course)
- Proving uniqueness is harder

Examples of "uniqueness"

- By "uniqueness" we mean that the product is unique up to reordering of the factors $p_{i}^{e_{i}}$.
- Examples
- $30=3^{1} \times 2^{1} \times 5^{1}=5^{1} \times 2^{1} \times 3^{1}$
- $88=2^{3} \times 11^{1}=11^{1} \times 2^{3}$
- $1026=2^{1} \times 3^{3} \times 19^{1}=2^{1} \times 19^{1} \times 3^{3}=19^{1} \times 2^{1} \times 3^{3}=3^{3} \times 19^{1} \times 2^{1}$

A necessary lemma

- Claim: Let $p \in \mathbf{P}, a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid(a+1)$.

A necessary lemma

Set of primes

- Claim: Let $p \in \mathbf{P}, a \in \mathbb{N}$. Then, if $p \mid a$, then $p \nmid(a+1)$.
- Proof:
- Assume that $p \mid(a+1)$. Then, this means that $\left(\exists r_{1} \in \mathbb{Z}\right)[a+$ $\left.1=p \cdot r_{1}\right]$ (I)
- We already know that $p \mid a \Rightarrow\left(\exists r_{2} \in \mathbb{Z}\right)\left[a=p \cdot r_{2}\right]$ (II)
- Substituting (II) into (I) yields: $p \cdot r_{2}+1=p \cdot r_{1} \Rightarrow$ $p\left(r_{1}-r_{2}\right)=1 \Rightarrow p \mid 1$ which is a contradiction. Therefore, $p \nmid(a+1)$.

STOP

RECORDING

