Homework 4

250H Spr 2024

Show that if $x \equiv 0 \pmod{21}$ and $y \equiv 0 \pmod{24}$ then $x+y \equiv 0 \pmod{3}$. Proof: Let $x \equiv 0 \pmod{21}$ and $y \equiv 0 \pmod{24}$. Then by definition, x = 21k and y = 24j for k, $j \in \mathbb{Z}$. So,

Since, $7k + 8j \in \mathbb{Z}$, $x + y \equiv 0 \pmod{3}$.

Make a conjecture and prove it of the form If $x \equiv 0 \pmod{m}$ and $y \equiv 0 \pmod{n}$ then $x+y \equiv 0 \pmod{BLANK}$

In order, for $x+y \equiv 0$ (mod BLANK), we need BLANK to be a factor of both x and y. To simplify our proof, let us say that BLANK is the gcd(x,y).

Def of GCD: Let a and b be integers, not both zero. The largest integer d such that d | a and d | b is called the greatest common divisor of a and b.

Proof: Let $x \equiv 0 \pmod{m}$, $y \equiv 0 \pmod{n}$, and gcd(m, n) = d for m, n, $d \in \mathbb{Z}$. Then by definition, $d \mid x$ and $d \mid y$. So, x = dk and y = dj for k, $j \in \mathbb{Z}$. So,

x + y = dk + dj

= d(k + j)

Since, $k + j \in \mathbb{Z}$, $x + y \equiv 0 \pmod{d} \equiv 0 \pmod{gcd(m,n)}$.

Compute the following MOD 23 and spot a pattern 7^0 , 7^1 , 7^2 , . . . Give us that pattern.

$7^0 = 1$	7 ⁵ = 17	7 ¹⁰ = 13	7 ¹⁵ = 14	7 ²⁰ = 8
7 ¹ = 7	$7^6 = 4$	7 ¹¹ = 22	$7^{16} = 6$	7 ²¹ = 10
$7^2 = 3$	7 ⁷ = 5	7 ¹² = 16	7 ¹⁷ = 19	7 ²² = 1
7 ³ = 21	7 ⁸ = 12	7 ¹³ = 20	7 ¹⁸ = 18	$7^{23} = 7$
7 ⁴ = 9	7 ⁹ = 15	7 ¹⁴ = 2	7 ¹⁹ = 11	7 ²⁴ = 3

Pattern: $7^n \equiv 7^{n+a} \equiv 7^{n+2a} \equiv \dots$

a = 22

Use that pattern to compute 7¹⁰⁰⁰ (mod 23)

$7^0 = 1$	7 ⁵ = 17	7 ¹⁰ = 13	7 ¹⁵ = 14	7 ²⁰ = 8
7 ¹ = 7	$7^6 = 4$	7 ¹¹ = 22	$7^{16} = 6$	7 ²¹ = 10
$7^2 = 3$	$7^7 = 5$	7 ¹² = 16	7 ¹⁷ = 19	7 ²² = 1
7 ³ = 21	7 ⁸ = 12	7 ¹³ = 20	7 ¹⁸ = 18	$7^{23} = 7$
7 ⁴ = 9	7 ⁹ = 15	7 ¹⁴ = 2	7 ¹⁹ = 11	7 ²⁴ = 3

 $7^{1000} = 7^{10 + 22(45)}$

 $\equiv 7^{10} \equiv 13 \pmod{23}$

7¹⁰⁰⁰ (mod 23) using in class method

- Write 1000 as a sum of powers of 2. $\circ 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^3$
- Fill in the following table:
 - \circ 7^{2⁰} ≡ 1 (mod 23)
 - $7^{2^{1}} \equiv (7^{2^{0}})^{2} \equiv 7^{2} \equiv 3 \pmod{23}$
 - $7^{2^{2}} \equiv (7^{2^{1}})^2 \equiv 3^2 \equiv 9 \pmod{23}$
 - $7^{2^{3}} \equiv (7^{2^{2}})^{2} \equiv 9^{2} \equiv 12 \pmod{23}$
 - $7^{2^{4}} \equiv (7^{2^{3}})^{2} \equiv 12^{2} \equiv 6 \pmod{23}$
 - $7^{2^{5}} \equiv (7^{2^{4}})^2 \equiv 6^2 \equiv 13 \pmod{23}$
 - $\circ \quad 7^{2^{6}} \equiv (7^{2^{5}})^2 \equiv 13^2 \equiv 8 \pmod{23}$
 - $7^{2^{n}7} \equiv (7^{2^{n}6})^2 \equiv 8^2 \equiv 18 \pmod{23}$
 - $7^{2^{8}} \equiv (7^{2^{7}})^{2} \equiv 18^{2} \equiv 2 \pmod{23}$
 - $7^{2^{9}} \equiv (7^{2^{8}})^2 \equiv 2^2 \equiv 4 \pmod{23}$
- Use the last two parts to get 7¹⁰⁰⁰ (mod 23)
 - $\circ \qquad 7^{1000} = 7^{2^{\circ}9} * 7^{2^{\circ}8} * 7^{2^{\circ}7} * 7^{2^{\circ}6} * 7^{2^{\circ}5} * 7^{2^{\circ}3}$

≡ 4 * 2 * 18 * 8 * 13 * 12 ≡ 179712 (mod 23) ≡ 13 (mod 23)

For which m is it the case that $(\forall a \in Z)[a^m \equiv a \pmod{m}]$?

Fermat's Little Theorem: If p is prime and a is an integer not divisible by p, then

 $a^{p-1} \equiv 1 \pmod{p}$

Furthermore, for every integer a we have

 $a^p \equiv a \pmod{p}$