Homework 4

250H Spr 2024

Show that if $x \equiv 0(\bmod 21)$ and $y \equiv 0(\bmod 24)$ then $x+y \equiv 0(\bmod 3)$.
Proof: Let $\mathrm{x} \equiv 0(\bmod 21)$ and $\mathrm{y} \equiv 0(\bmod 24)$. Then by definition, $\mathrm{x}=21 \mathrm{k}$ and $\mathrm{y}=24 \mathrm{j}$ for $\mathrm{k}, \mathrm{j} \in \mathbf{Z}$. So,

$$
\begin{gathered}
x+y=21 k+24 j \\
\quad=3(7 k+8 j)
\end{gathered}
$$

Since, $7 \mathrm{k}+8 \mathrm{j} \in \mathrm{Z}, \mathrm{x}+\mathrm{y} \equiv 0(\bmod 3)$. D

Make a conjecture and prove it of the form If $x \equiv 0(\bmod m)$ and $y \equiv 0(\bmod n)$ then $x+y \equiv 0(\bmod B L A N K)$
In order, for $\mathrm{x}+\mathrm{y} \equiv 0(\bmod$ BLANK), we need BLANK to be a factor of both x and y .
To simplify our proof, let us say that BLANK is the $\operatorname{gcd}(\mathrm{x}, \mathrm{y})$.
Def of GCD: Let a and b be integers, not both zero. The largest integer d such that d l a and d l is called the greatest common divisor of a and b .

Proof: Let $\mathrm{x} \equiv 0(\bmod \mathrm{~m}), \mathrm{y} \equiv 0(\bmod \mathrm{n})$, and $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=\mathrm{d}$ for $\mathrm{m}, \mathrm{n}, \mathrm{d} \in \mathbf{Z}$. Then by definition, d l and $\mathrm{d} \mid \mathrm{y}$. So, $\mathrm{x}=\mathrm{dk}$ and $\mathrm{y}=\mathrm{dj}$ for $\mathrm{k}, \mathrm{j} \in \mathbf{Z}$. So,

$$
\begin{gathered}
x+y=d k+d j \\
=d(k+j)
\end{gathered}
$$

Since, $k+j \in Z, x+y \equiv 0(\bmod d) \equiv 0(\bmod \operatorname{gcd}(m, n)) . D$

Compute the following MOD 23 and spot a pattern $7^{0}, 7^{1}, 7^{2}, \ldots$ Give us that pattern.

$7^{0}=1$	$7^{5}=17$	$7^{10}=13$	$7^{15}=14$	$7^{20}=8$
$7^{1}=7$	$7^{6}=4$	$7^{11}=22$	$7^{16}=6$	$7^{21}=10$
$7^{2}=3$	$7^{7}=5$	$7^{12}=16$	$7^{17}=19$	$7^{22}=1$
$7^{3}=21$	$7^{8}=12$	$7^{13}=20$	$7^{18}=18$	$7^{23}=7$
$7^{4}=9$	$7^{9}=15$	$7^{14}=2$	$7^{19}=11$	$7^{24}=3$

Pattern: $7^{n} \equiv 7^{n+a} \equiv 7^{n+2 a} \equiv \ldots$
$a=22$

Use that pattern to compute $7^{1000}(\bmod 23)$

$7^{0}=1$	$7^{5}=17$	$7^{10}=13$	$7^{15}=14$	$7^{20}=8$
$7^{1}=7$	$7^{6}=4$	$7^{11}=22$	$7^{16}=6$	$7^{21}=10$
$7^{2}=3$	$7^{7}=5$	$7^{12}=16$	$7^{17}=19$	$7^{22}=1$
$7^{3}=21$	$7^{8}=12$	$7^{13}=20$	$7^{18}=18$	$7^{23}=7$
$7^{4}=9$	$7^{9}=15$	$7^{14}=2$	$7^{19}=11$	$7^{24}=3$

$$
\begin{aligned}
& 7^{1000}=7^{10+22(45)} \\
& \equiv 7^{10} \equiv 13(\bmod 23)
\end{aligned}
$$

$7^{1000}(\bmod 23)$ using in class method

- Write 1000 as a sum of powers of 2.
- $2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}$
- Fill in the following table:
- $\quad 7^{2^{\wedge} 0} \equiv 1(\bmod 23)$
- $\quad 7^{2 n} \equiv\left(7^{20}\right)^{2} \equiv 7^{2} \equiv 3(\bmod 23)$
- $7^{2 \times 2} \equiv\left(7^{2 n}\right)^{2} \equiv 3^{2} \equiv 9(\bmod 23)$
- $\quad 7^{2^{\wedge} 3} \equiv\left(7^{2^{2}}\right)^{2} \equiv 9^{2} \equiv 12(\bmod 23)$
- $7^{2^{\wedge} 4} \equiv\left(7^{23}\right)^{2} \equiv 12^{2} \equiv 6(\bmod 23)$
- $7^{2 \wedge} \equiv\left(7^{2^{\wedge} 4}\right)^{2} \equiv 6^{2} \equiv 13(\bmod 23)$
- $\left.7^{2^{\wedge} 6} \equiv\left(7^{\wedge}\right)^{2}\right)^{2} \equiv 13^{2} \equiv 8(\bmod 23)$
- $7^{2 \wedge 7} \equiv\left(7^{2^{\wedge} 6}\right)^{2} \equiv 8^{2} \equiv 18(\bmod 23)$
- $7^{2^{\wedge} 8} \equiv\left(7^{2^{\wedge}}\right)^{2} \equiv 18^{2} \equiv 2(\bmod 23)$
- $7^{2^{\wedge} 9} \equiv\left(7^{28}\right)^{2} \equiv 2^{2} \equiv 4(\bmod 23)$
- Use the last two parts to get $7^{1000}(\bmod 23)$
- $\quad 7^{1000}=7^{2 \wedge 9} * 7^{2 \wedge} \cdot 7^{2^{\wedge 7}} * 7^{2 \wedge 6} * 7^{2 \wedge} \cdot 7^{2 \wedge 3}$
$\equiv 4$ * 2 * 18 * 8 * 13 * $12 \equiv 179712(\bmod 23) \equiv 13(\bmod 23)$

For which m is it the case that $(\forall \mathrm{a} \in \mathrm{Z})\left[\mathrm{a}^{\mathrm{m}} \equiv \mathrm{a}(\bmod \mathrm{m})\right]$?

Fermat's Little Theorem: If p is prime and a is an integer not divisible by p, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Furthermore, for every integer a we have

$$
a^{p} \equiv a(\bmod p)
$$

