Homework 5

250H Spr 2024

Let p be a prime. Show that $\sqrt{ } p \notin \mathbf{Q}$ using Unique Factorization.

Proof: For the sake of contradiction, assume that $\sqrt{ } p \in \mathbf{Q}$. Then by definition, $\sqrt{ } p=$ a / b for $a, b \in \mathbf{Z}$ and
$b \neq 0$. Let us add the restriction that a and b have no common factors. So,

$$
\begin{aligned}
& \sqrt{ } p=a / b \\
& p=a^{2} / b^{2} \\
& b^{2} p=a^{2}
\end{aligned}
$$

Let p be a prime. Show that $\sqrt{ } \mathrm{p} \notin \mathbf{Q}$ using Unique Factorization.

Let us factor a and b into primes so $a=p_{1}^{a 1} \times \cdots \times p_{m}^{a m}$ and $b=p_{1}^{b 1} \times \cdots \times p_{m}^{b m}$. WLOG let $p=p_{1}$. So,

$$
\begin{aligned}
\left(p_{1}^{b 1} \times \cdots \times p_{m}^{b m}\right)^{2} p & =\left(p_{1}^{a 1} \times \cdots \times p_{m}^{a m}\right)^{2} \\
\left(p_{1}^{2 b 1} \times \cdots \times p_{m}^{2 b m}\right) p & =p_{1}^{2 a 1} \times \cdots \times p_{m}^{2 a m} \\
p_{1}^{2 b 1+1} \times \cdots \times p_{m}^{2 b m} & =p_{1}^{2 a 1} \times \cdots \times p_{m}^{2 a m} \\
p_{1}^{2 b 1+1} & =p_{1}^{2 a 1}
\end{aligned}
$$

So, this would have to mean $2 \mathrm{~b}_{1}+1=2 \mathrm{a}_{1}$. This cannot happen as then that would mean by definition $2 b_{1}+1$ is odd and $2 a_{1}$ is even. Since, an odd cannot equal an even, we have a contradiction. D

Let p be a prime. Show that $\mathrm{p}^{1 / \mathrm{c}} \notin \mathbf{Q}$ using Unique Factorization.

Proof: For the sake of contradiction, assume that $\mathrm{p}^{1 / c} \in \mathbf{Q}$. Then by definition, $\mathrm{p}^{1 / c}=$ a / b for $a, b \in \mathbf{Z}$ and
$b \neq 0$. Let us add the restriction that a and b have no common factors. So,

$$
\begin{aligned}
& p^{1 / c}=a / b \\
& p=a^{c} / b^{c} \\
& b^{c} p=a^{c}
\end{aligned}
$$

Let p be a prime. Show that $\mathrm{p}^{1 / \mathrm{c}} \notin \mathbf{Q}$ using Unique Factorization.

Let us factor a and b into primes so $a=p_{1}^{a 1} \times \cdots \times p_{m}^{a m}$ and $b=p_{1}^{b 1} \times \cdots \times p_{m}^{b m}$. WLOG let $p=p_{1}$. So,

$$
\begin{aligned}
\left(p_{1}^{b 1} \times \cdots \times p_{m}^{b m}\right)^{c} p & =\left(p_{1}^{a 1} \times \cdots \times p_{m}^{a m}\right)^{c} \\
\left(p_{1}^{c b 1} \times \cdots \times p_{m}^{c b m}\right) p & =p_{1}^{c a 1} \times \cdots \times p_{m}^{c a m} \\
p_{1}^{c b 1+1} \times \cdots \times p_{m}^{c b m} & =p_{1}^{c a 1} \times \cdots \times p_{m}^{c a m} \\
p_{1}^{c b 1+1} & =p_{1}^{c a 1}
\end{aligned}
$$

So, this would have to mean $\mathrm{cb}_{1}+1=\mathrm{ca}$. The LHS $\equiv 1(\bmod \mathrm{c})$ and RHS $\equiv 0(\bmod \mathrm{c})$. Since this cannot happen, we have a contradiction. D

