How to Write Proofs

250H

What is the point of a proof?

- Prove that a statement is true clearly and without ambiguity

Types of Proofs

- Direct

- $\quad p \rightarrow q$
- Assume p
- Show q

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Types of Proofs

- Direct
- $p \rightarrow q$
- Assume p
- Show q
- Contradiction
- $p \rightarrow \neg q$
- Assume p and $\neg q$
- Show something goes wrong

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Types of Proofs

- Direct
- $p \rightarrow q$
- Assume p
- Show q
- Contradiction
- $p \rightarrow \neg q$
- Assume p and $\neg q$
- Show something goes wrong
- Contrapositive

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

- $\neg q \rightarrow \neg p$
- Assume $\neg q$
- Show ᄀp

Tips on how to start a proof

- What do we know
- What do we want to show
- What definitions might we need
- What type of proof are we going to use

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $\mathrm{n}=2 \mathrm{k}$ where k is an integer
- Def of odd: n is odd if $n=2 k+1$ where k is an integer

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $\mathrm{n}=2 \mathrm{k}$ where k is an integer
- Def of odd: n is odd if $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer
- What type of proof are we going to use

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

- What do we know
- n is in the integers
- n^{2} is even
- What do we want to show
- n is even
- What definitions might we need
- Def of even: n is even if $\mathrm{n}=2 \mathrm{k}$ where k is an integer
- Def of odd: n is odd if $n=2 k+1$ where k is an integer
- What type of proof are we going to use
- Direct? No
- Contradiction? Possibly
- Contrapositive? Possibly

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out the contradiction:
- Hence, we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- For the sake of contradiction, assume n^{2} is even and n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out the contradiction:
- Hence, we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.
- Finish it:
- Thus, if n^{2} is even, then n is even.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

Let $n \in Z$. For the sake of contradiction, assume n^{2} is even and n is odd. If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number. Then,

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
= & 4 k^{2}+4 k+1 \\
= & 2\left(2 k^{2}+2 k\right)+1 .
\end{aligned}
$$

Hence we have a contradiction as $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer. Thus, if n^{2} is even, then n is even. D

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- Assume by contrapositive that n is odd.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $\mathrm{n}=2 \mathrm{k}+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $\mathrm{n} \in \mathrm{Z}$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $\mathrm{n}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$.
- Spell out your result:
- Hence $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.

Example: Let $\mathrm{n} \in \mathrm{Z}$. Prove that if n^{2} is even, then n is even.

Proof:

- Tell me what you have:
- Let $n \in Z$.
- Assume by contrapositive that n is odd.
- Use Definitions:
- If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number.
- Do the algebra:
- Then, $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$.
- Spell out your result:
- Hence $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer.
- Finish it:
- So, if n is odd, then n^{2} is odd.
- Thus, if n^{2} is even, then n is even.

Example: Let $n \in Z$. Prove that if n^{2} is even, then n is even.

Proof:

Let $n \in Z$. Assume by way of contrapositive that n is odd.If n is odd then $n=2 k+1$ where k is an integer by the definition of an odd number. Then,

$$
\begin{aligned}
& n^{2}=(2 k+1)^{2} \\
= & 4 k^{2}+4 k+1 \\
= & 2\left(2 k^{2}+2 k\right)+1 .
\end{aligned}
$$

Hence, $2\left(2 k^{2}+2 k\right)+1$ is odd since $2 k^{2}+2 k$ is an integer. So, if n is odd, then n^{2} is odd. Thus, if n^{2} is even, then n is even. D

Prove: The sum of two numbers with the same parity is always even.

Proof: Let x and y be integers. Consider the cases:
Case 1: x and y are even. If x and y are even, by definition $x=2 k$ and $y=2 h$ were k and h are integers. So,

$$
x+y=2 k+2 h=2(k+h)
$$

Since $\mathrm{k}+\mathrm{h}$ is an integer, $\mathrm{x}+\mathrm{y}$ is even.
Case 2: x and y are odd. If x and y are odd, by definition $x=2 k+1$ and $y=2 h+1$ were k and h are integers. So,

$$
x+y=2 k+2 h+2=2(k+h+1)
$$

Since $k+h+1$ is an integer, $x+y$ is even.
So, our statement holds. D

Tips

- Do not assume your reader knows all definitions
- Do not assume your reader sees what you see
- It is clear that blah blah blah
- No it is not
- Do not make things complicated for your reader. It does not make you look more intelligent.

What did we prove?

Proof: We consider two cases.
Case 1. a and b are even. Then $a=2 r$ and $b=2 s$ for integers r and s. Thus, $a^{2}-$ $b^{2}=(2 r)^{2}-(2 s)^{2}=4 r^{2}-4 s^{2}=2\left(2 r^{2}-2 s^{2}\right)$. Since $2 r^{2}-2 s^{2}$ is an integer, $a^{2}-b$ ${ }^{2}$ is even.

Case 2. a and b are odd. Then $\mathrm{a}=2 \mathrm{r}+1$ and $\mathrm{b}=2 \mathrm{~s}+1$ for integers r and s . Thus, $a^{2}-b^{2}=(2 r+1)^{2}-(2 s+1)^{2}=\left(4 r^{2}+4 r+1\right)-\left(4 s^{2}+4 s+1\right)=4 r^{2}+4 r-4 s^{2}$ $-4 s=2\left(2 r^{2}+2 r-2 s^{2}-2 s\right)$. Since $2 r^{2}+2 r-2 s^{2}-2 s$ is an integer, $a^{2}-b^{2}$ is even.

Statement: If a and b are integers with the same parity, then $a^{2}-b^{2}$ is even.

What did we prove?

Proof: Assume that x is even. Then $\mathrm{x}=2$ a for some integer a. So,

$$
3 x^{2}-4 x-5=3(2 a)^{2}-4(2 a)-5=12 a^{2}-8 a-5=2\left(6 a^{2}-4 a-3\right)+1
$$

Since $6 a^{2}-4 a-3$ is an integer, $3 x^{2}-4 x-5$ is odd.
For the converse, assume that x is odd. So, $x=2 b+1$, where $b \in Z$. Therefore,

$$
\begin{gathered}
3 x^{2}-4 x-5=3(2 b+1)^{2}-4(2 b+1)-5=3\left(4 b^{2}+4 b+1\right)-8 b-4-5 \\
=12 b^{2}+4 b-6=2\left(6 b^{2}+2 b-3\right)
\end{gathered}
$$

Since $6 b^{2}+2 b-3$ is an integer, $3 x^{2}-4 x-5$ is even.

Statement: If x is an integer, then $3 x^{2}-4 x-5$ is the opposite parity of x.

The following is an attempted proof of a result. What is the result and is the attempted proof correct?

Proof: Assume, without loss of generality, that x is even. Then $x=2$ a for some integer a. Thus,

$$
x y^{2}=(2 a) y^{2}=2\left(a y^{2}\right)
$$

Since $a y^{2}$ is an integer, $x y^{2}$ is even.

Statement: If x is even or y is even are integers, then $x y^{2}$ is even.
Correct: No. Without loss of generality can not be used here.

Proof?: $\pi=4$
Proof: Consider a square with a perimeter of 4 and a circle inside that square with a diameter of 1 .

Proof?: $\pi=4$
Proof: Invert the Corners. The perimeter is still 4

Proof?: $\pi=4$
Proof: Invert the Corners again. The perimeter is still 4

Proof?: $\pi=4$

Proof: Repeat infinity times. We know $C=2 \pi r$. Here $r=1 / 2$. So, $C=2 \pi(1 / 2)=\pi=4$.

Proof?: $\pi=4$
Proof: Repeat infinity times. We know $C=2 \pi r$. Here $r=1 / 2$. So, $C=2 \pi(1 / 2)=\pi=4$.
Why is this wrong?

Proof?: $\pi=4$
Proof: Repeat infinity times. We know $C=2 \pi r$. Here $r=1 / 2$. So, $C=2 \pi(1 / 2)=\pi=4$.
Why is this wrong? We never actually exactly match the circle. Pictures are not proofs, they can only help understanding.

