Timed Midterm

250H Spr 2024

Show that, for all $n \geq 1$, there is a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ that has exactly n^{2} satisfying assignments.

- We can simply write out a truth table and have the first n^{2} entries be true and the rest be false. Then we can use the truth table to create a formula that would have exactly n^{2} satisfying assignments

Give a function $f(n)$ so that the following statement is FALSE For all $n \geq 1000$, there is a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ that has exactly $f(n)$ satisfying assignments.

- Consider $f(n)=2^{n+1}$. A formula that has n variables can have at most 2^{n} satisfying assignments. Therefore, we cannot have 2^{n+1} of them.

Let $A=\{a, 3$, bill $\}$. Write down all elements of the powerset of A

- $P(A)=\{\varnothing,\{a\},\{3\},\{b i l l\},\{a, 3\},\{a$, bill\}, \{3, bill\}, \{a, 3, bill\}\}

Is the following statement True or False: If the powerset of A has exactly 7 elements then A is infinite.

- True.
- Let A have n elements. Then $P(A)$ has to have 2^{n} elements. 2^{n} can never equal 7. Therefore our statement is: If false then A is infinite. The truth value of whether A is infinite does not matter. Therefore, the statement is vacuously true.

Is the following statement True or False: If the powerset of A has exactly 8 elements then A is infinite.

- False.
- Let $A=\{1,2,3\}$. The powerset of A has 8 elements: $\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2$, $3\},\{1,2,3\}\}$. But A is finite, so our statement must be false.

Fill in the blanks and justify.

- $\quad(x \equiv 0(\bmod 3)) \wedge(y \equiv 0(\bmod 5)) \Rightarrow x y \equiv 0\left(\bmod B L A N K_{1}\right)$
- If $x \equiv 0(\bmod 3)$, then $x=3 k$ for some k
- If $y \equiv 0(\bmod 5)$, then $y=5 j$ for some j
- So, $x y=(3 k)(5 \mathrm{j})=15(\mathrm{kj})$
- Therefore by definition, $x y \equiv 0(\bmod 15)$
- $(x \equiv 0(\bmod a)) \wedge(x \equiv 0(\bmod b)) \Rightarrow x y \equiv 0\left(\bmod B L A N K_{2}\right)$
- If $x \equiv 0(\bmod a)$, then $x=$ ak for some k
- If $y \equiv 0(\bmod b)$, then $y=b j$ for some j
- \quad So, $x y=(a k)(b j)=a b(k j)$
- Therefore by definition, $x y \equiv 0$ (mod ab)

Fill in the blanks and justify.

- $\quad(x \equiv 0(\bmod 6)) \wedge(x \equiv 0(\bmod 15)) \Rightarrow x+y \equiv 0\left(\bmod B L A N K_{3}\right)$
- If $x \equiv 0(\bmod 6)$, then $x=6 k$ for some k
- If $y \equiv 0(\bmod 15)$, then $y=15 j$ for some j
- \quad So, $x+y=(6 k)+(15 j)=3(2 k+5 j)$
- Therefore by definition, $x+y \equiv 0(\bmod 3)$
- $(x \equiv 0(\bmod a)) \wedge(x \equiv 0(\bmod b)) \Rightarrow x+y \equiv 0\left(\bmod B L A N K_{4}\right)$
- If $x \equiv 0(\bmod a)$, then $x=a k$ for some k
- If $y \equiv 0(\bmod b)$, then $y=b j$ for some j
- So, $x+y=(a k)+(b j)$
- In order for, $x+y \equiv 0(\bmod B L A N K)$, We need to have a common factor between a and b to make as the mod. Therefore for simplicity sake, $x+y \equiv 0(\bmod \operatorname{gcd}(a, b))$

