Timed Midterm

250H Spr 2024

Show that, for all $n \ge 1$, there is a formula $\varphi(x_1, \ldots, x_n)$ that has exactly n^2 satisfying assignments.

 We can simply write out a truth table and have the first n² entries be true and the rest be false. Then we can use the truth table to create a formula that would have exactly n² satisfying assignments Give a function f(n) so that the following statement is FALSE For all $n \ge 1000$, there is a formula $\varphi(x_1, \ldots, x_n)$ that has exactly f (n) satisfying assignments.

• Consider $f(n) = 2^{n+1}$. A formula that has n variables can have at most 2^n satisfying assignments. Therefore, we cannot have 2^{n+1} of them.

Let $A = \{a, 3, bill\}$. Write down all elements of the powerset of A

• P(A) = {Ø, {a}, {3}, {bill}, {a, 3}, {a, bill}, {3, bill}, {a, 3, bill}}

Is the following statement True or False: If the powerset of A has exactly 7 elements then A is infinite.

- True.
- Let A have n elements. Then P(A) has to have 2ⁿ elements. 2ⁿ can never equal 7. Therefore our statement is: If false then A is infinite. The truth value of whether A is infinite does not matter. Therefore, the statement is vacuously true.

Is the following statement True or False: If the powerset of A has exactly 8 elements then A is infinite.

- False.
- Let A = {1, 2, 3}. The powerset of A has 8 elements: {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}. But A is finite, so our statement must be false.

Fill in the blanks and justify.

- $(x \equiv 0 \pmod{3}) \land (y \equiv 0 \pmod{5}) \Rightarrow xy \equiv 0 \pmod{BLANK_1}$
 - If $x \equiv 0 \pmod{3}$, then x = 3k for some k
 - If $y \equiv 0 \pmod{5}$, then y = 5j for some j
 - So, xy = (3k)(5j) = 15(kj)
 - Therefore by definition, $xy \equiv 0 \pmod{15}$
- $(x \equiv 0 \pmod{a}) \land (x \equiv 0 \pmod{b}) \Rightarrow xy \equiv 0 \pmod{BLANK_2}$
 - If $x \equiv 0 \pmod{a}$, then x = ak for some k
 - If $y \equiv 0 \pmod{b}$, then y = bj for some j
 - \circ So, xy = (ak)(bj) = ab(kj)
 - Therefore by definition, $xy \equiv 0 \pmod{ab}$

Fill in the blanks and justify.

- $(x \equiv 0 \pmod{6}) \land (x \equiv 0 \pmod{15}) \Rightarrow x + y \equiv 0 \pmod{BLANK_3}$
 - If $x \equiv 0 \pmod{6}$, then x = 6k for some k
 - If $y \equiv 0 \pmod{15}$, then y = 15j for some j
 - \circ So, x + y = (6k) + (15j) = 3(2k + 5j)
 - Therefore by definition, $x + y \equiv 0 \pmod{3}$
- $(x \equiv 0 \pmod{a}) \land (x \equiv 0 \pmod{b}) \Rightarrow x + y \equiv 0 \pmod{BLANK_4}$
 - If $x \equiv 0 \pmod{a}$, then x = ak for some k
 - If $y \equiv 0 \pmod{b}$, then y = bj for some j
 - \circ So, x + y = (ak) + (bj)
 - In order for, $x + y \equiv 0 \pmod{\text{BLANK}_4}$, We need to have a common factor between a and b to make as the mod. Therefore for simplicity sake, $x + y \equiv 0 \pmod{\text{gcd}(a,b)}$