Untimed Midterm

250H Spr 2024

For each of the following sentences say if they are TRUE or FALSE and JUSTIFY your answer.

Let I = R - Q, the set of irrationals, for this problem.

- $(\forall x, y \in 1)[x<y \rightarrow(x+y) / 2 \in I)]$
- False.
- Let $x=-|z|$ and $y=|z|$ for $z \in I$. Then $(x+y) / 2=(-|z|+|z|) / 2=0 / 2=0$. Since $0 \in Q$ our statement is false.
- $(\forall x, y \in I)[x<y \rightarrow(\exists z \in I)[x<z<y]$
- True.
- Consider $d=y-x$ and an n such that $1 / n<d$. Let $z=x+1 / n$. We have $x<z<y$. Now lets make sure z is irrational. Let z be rational. Then by def, $z=a / b$ where $a, b \in Z$ and $b \neq 0$. Then $z=x+1 / n$
$a / b=x+1 / n$
$x=a / b-1 / n$
But that would mean x is rational. Hence z is irrational.

For each of the following sentences say if they are TRUE or FALSE and JUSTIFY your answer.

Let I = R - Q, the set of irrationals, for this problem.

- $(\forall x, y \in I)[x<y \rightarrow(\exists z \in Q)[x<z<y]$
- True
- Consider, $x=n_{x}+0 . x_{1} x_{2} x_{3} \ldots$ where $n_{x} \in N$ and $y=n_{y}+0 . y_{1} y_{2} y_{3} \ldots$ where $n_{y} \in N$. Let $n_{x}<n_{y}$ and let $z=n_{x}+1$.
Let i be such that $x_{i}<y_{i}$. Note if no i existed then $x=y$, so a i must exist
Consider $z=n_{x}+0 . x_{1} x_{2} \cdots\left(x_{i-1}\right)\left(x_{i}+1\right)$.
This would give us $x<z<y$.
We can see that $z \in Q$ as the decimal part would terminate at the x_{i} place. If we have a decimal that terminates, it can be turned into a fraction and thus $z \in Q$

For each of the following sentences say if they are TRUE or FALSE and JUSTIFY your answer.

Let I = R - Q, the set of irrationals, for this problem.

- $(\forall x, y \in Q)[x<y \rightarrow(\exists z \in)[x<z<y]$
- True
- Let $\mathrm{d}=\mathrm{y}$ - x . Consider an n such that $1 /(\mathrm{n} \sqrt{ } 2)<\mathrm{d}$.

Let $\mathrm{z}=\mathrm{x}+1 /(\mathrm{n} \sqrt{ } 2)$.
Note z is irrational as $1 /(n \sqrt{ } 2)$ is irrational.
We also have $\mathrm{x}<\mathrm{z}<\mathrm{y}$.

Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=1$ if exactly two inputs are 1 and $x_{5}=0$. Else 0 .

- How many rows are in the Truth Table for f?

$$
\text { - } 2^{5}=32
$$

- How many rows of the truth table have 1 output?
- 6
- Write down all of the rows of the Truth Table that output 1.

$$
\begin{aligned}
& \circ(T, T, F, F, F) \\
&(T, F, T, F, F) \\
&(T, F, F, T, F) \\
&(F, T, T, F, F) \\
&(F, T, F, T, F) \\
&(F, F, T, T, F)
\end{aligned}
$$

- Write a DNF formula for f using the partial truth table in the last part.
- $\left(\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge x_{4} \wedge \neg x_{5}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{5}\right) \vee\left(\neg x_{1} \wedge x_{2} \wedge x_{3} \wedge \neg x_{4}\right.$ $\left.\wedge \neg x_{5}\right) \vee$ $\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3} \wedge x_{4} \wedge \neg x_{5}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{4} \wedge \neg x_{5}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x_{4}\right.$

Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=1$ if exactly two inputs are 1 and $x_{5}=0$. Else 0 .

- You used a trick to avoid writing down that TT. Name a function $g\left(x_{1}, \ldots, x_{n}\right)$ where the trick would save you LOTS of time.
- $g\left(x_{1}, \ldots, x_{n}\right)=1$ iff only one row results in true
- Instead of writing out a truth table of size 2^{n} you can just write down the single row that is true.
- Name a function $h\left(x_{1}, \ldots, x_{n}\right)$ where the trick would NOT save LOTS of time. Explain why.
- $h\left(x_{1}, \ldots, x_{n}\right)=1$ iff all rows result in true
- All rows result in true, so all 2^{n} rows would need to be written down.

