Domains with a Finite Number of Primes

Primes in \mathbb{Z}

Thm \mathbb{Z} has an infinite number of primes.
Proof Same proof as for \mathbb{N}.

Primes in \mathbb{Z}

Thm \mathbb{Z} has an infinite number of primes.
Proof Same proof as for \mathbb{N}.
Actually, we should think in terms of \mathbb{Z}, not \mathbb{N}.

Primes in \mathbb{Z} : There is an issue

Lets list all of the primes in \mathbb{Z} :

$$
\{-2,2,-3,3,-7,7, \ldots\}
$$

Primes in \mathbb{Z} : There is an issue

Lets list all of the primes in \mathbb{Z} :

$$
\{-2,2,-3,3,-7,7, \ldots\}
$$

We don't really want to count 2 and -2 .

Primes in \mathbb{Z} : There is an issue

Lets list all of the primes in \mathbb{Z} :

$$
\{-2,2,-3,3,-7,7, \ldots\}
$$

We don't really want to count 2 and -2 .
We will address this when we generalize the concept of an infinite number of primes

What is a Domain?

The title of this talk is
Domains with a Finite Number of Primes
What is a domain?

What is a Domain?

The title of this talk is
Domains with a Finite Number of Primes
What is a domain?
On the next slide we will define Integral Domain which is a set of numbers that have many of the same properties as the integers.

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

1. $\mathbb{D} \subseteq \mathbb{C}$

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

1. $\mathbb{D} \subseteq \mathbb{C}$
2. $(\forall x, y \in \mathbb{D})[x+y \in \mathbb{D}$ AND $x y \in \mathbb{D}]$.

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

1. $\mathbb{D} \subseteq \mathbb{C}$
2. $(\forall x, y \in \mathbb{D})[x+y \in \mathbb{D}$ AND $x y \in \mathbb{D}]$.
3. $(\forall x \in \mathbb{D})[-x \in \mathbb{D}]$.

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

1. $\mathbb{D} \subseteq \mathbb{C}$
2. $(\forall x, y \in \mathbb{D})[x+y \in \mathbb{D}$ AND $x y \in \mathbb{D}]$.
3. $(\forall x \in \mathbb{D})[-x \in \mathbb{D}]$.
4. $0,1 \in \mathbb{D}$.

Integral Domains

(Note: The following definition is not standard but it is better for our purposes.)
Definition \mathbb{D} is an Integral Domain if the following are true.

1. $\mathbb{D} \subseteq \mathbb{C}$
2. $(\forall x, y \in \mathbb{D})[x+y \in \mathbb{D}$ AND $x y \in \mathbb{D}]$.
3. $(\forall x \in \mathbb{D})[-x \in \mathbb{D}]$.
4. $0,1 \in \mathbb{D}$.

Note We did not require that $(\forall x \in \mathbb{D}-\{0\})\left[\frac{1}{x} \in \mathbb{D}\right]$.

Examples of Int. Domains and NON-Int. Domains

Examples of Int. Domains and NON-Int. Domains

1. \mathbb{N} is not an integral domain. There is no -4 .

Examples of Int. Domains and NON-Int. Domains

1. \mathbb{N} is not an integral domain. There is no -4 .
2. \mathbb{Z} is an integral domain.

Examples of Int. Domains and NON-Int. Domains

1. \mathbb{N} is not an integral domain. There is no -4 .
2. \mathbb{Z} is an integral domain.
3. \mathbb{Q} and \mathbb{R} and \mathbb{C} are integral domains.

Examples of Int. Domains and NON-Int. Domains

1. \mathbb{N} is not an integral domain. There is no -4 .
2. \mathbb{Z} is an integral domain.
3. \mathbb{Q} and \mathbb{R} and \mathbb{C} are integral domains.
4. $\mathbb{G}=\{a+b i: a, b \in \mathbb{Z}\}$ is an integral domain.

Examples of Int. Domains and NON-Int. Domains

1. \mathbb{N} is not an integral domain. There is no -4 .
2. \mathbb{Z} is an integral domain.
3. \mathbb{Q} and \mathbb{R} and \mathbb{C} are integral domains.
4. $\mathbb{G}=\{a+b i: a, b \in \mathbb{Z}\}$ is an integral domain.
5. $\mathbb{F}=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$ is an integral domain.

Units, Primes, Composites

We first need to clarify what primes are.
Definition Let \mathbb{D} be an integral domain.

Units, Primes, Composites

We first need to clarify what primes are.
Definition Let \mathbb{D} be an integral domain.

1. $x \in \mathbb{D}-\{0\}$ is a unit if $(\exists y \in \mathbb{D})[x y=1] . \mathbb{U}$ is the set of units.

Units, Primes, Composites

We first need to clarify what primes are.
Definition Let \mathbb{D} be an integral domain.

1. $x \in \mathbb{D}-\{0\}$ is a unit if $(\exists y \in \mathbb{D})[x y=1] . \mathbb{U}$ is the set of units.
2. $x \in \mathbb{D}-\{0\}$ is prime if $x=y z$ implies $y \in \mathbb{U}$ or $z \in \mathbb{U}$.

Units, Primes, Composites

We first need to clarify what primes are.
Definition Let \mathbb{D} be an integral domain.

1. $x \in \mathbb{D}-\{0\}$ is a unit if $(\exists y \in \mathbb{D})[x y=1] . \mathbb{U}$ is the set of units.
2. $x \in \mathbb{D}-\{0\}$ is prime if $x=y z$ implies $y \in \mathbb{U}$ or $z \in \mathbb{U}$.
3. $x \in \mathbb{D}-\{0\}$ is composite if $(\exists y, z \notin \mathbb{U})[x=y z]$.

Clarifying "Infinite Number of Primes"

In \mathbb{Z} we don't want to count both 2 and -2 when saying infinite number of primes.

Clarifying "Infinite Number of Primes"

In \mathbb{Z} we don't want to count both 2 and -2 when saying infinite number of primes.

Convention The phrase \mathbb{D} has an infinite number of primes means that there \mathbb{D} has an infinite sequence of primes p_{1}, p_{2}, \ldots such that For all $i, j \frac{p_{i}}{p_{j}} \notin \mathbb{U}$.

Clarifying "Infinite Number of Primes"

In \mathbb{Z} we don't want to count both 2 and -2 when saying infinite number of primes.

Convention The phrase \mathbb{D} has an infinite number of primes means that there \mathbb{D} has an infinite sequence of primes p_{1}, p_{2}, \ldots such that For all $i, j \frac{p_{i}}{p_{j}} \notin \mathbb{U}$.

Note that 2 and -2 would not both be on the list.

Which of $\mathbb{Z}, \mathbb{Q}, \mathbb{G}, \mathbb{F}$ have an Inf. Numb. of Primes?

\mathbb{Z} we know has an infinite number of primes.
Discuss Does \mathbb{Q} have an infinite number of primes?

Which of $\mathbb{Z}, \mathbb{Q}, \mathbb{G}, \mathbb{F}$ have an Inf. Numb. of Primes?

\mathbb{Z} we know has an infinite number of primes.
Discuss Does \mathbb{Q} have an infinite number of primes?
Every element of $\mathbb{Q}-\{0\}$ is a unit. So there are ZERO primes.

Which of $\mathbb{Z}, \mathbb{Q}, \mathbb{G}, \mathbb{F}$ have an Inf. Numb. of Primes?

\mathbb{Z} we know has an infinite number of primes.
Discuss Does \mathbb{Q} have an infinite number of primes?
Every element of $\mathbb{Q}-\{0\}$ is a unit. So there are ZERO primes.
Discuss Does $\mathbb{G}=\{a+b i: a, b \in \mathbb{Z}\}$ have an ∞ number of primes?

Which of $\mathbb{Z}, \mathbb{Q}, \mathbb{G}, \mathbb{F}$ have an Inf. Numb. of Primes?

\mathbb{Z} we know has an infinite number of primes.
Discuss Does \mathbb{Q} have an infinite number of primes?
Every element of $\mathbb{Q}-\{0\}$ is a unit. So there are ZERO primes.
Discuss Does $\mathbb{G}=\{a+b i: a, b \in \mathbb{Z}\}$ have an ∞ number of primes?
It does- you may look into that on a later HW.

Is it always ZERO of INFINITE?

Is it always ZERO of INFINITE?

1. \mathbb{Z} and \mathbb{G} have an INFINITE number of primes.

Is it always ZERO of INFINITE?

1. \mathbb{Z} and \mathbb{G} have an INFINITE number of primes.
2. \mathbb{Q} and \mathbb{R} and \mathbb{C} have ZERO primes.

Is it always ZERO of INFINITE?

1. \mathbb{Z} and \mathbb{G} have an INFINITE number of primes.
2. \mathbb{Q} and \mathbb{R} and \mathbb{C} have ZERO primes.

Vote TRUE or FALSE or UNKNOWN TO SCIENCE:
Every Integral Domain has either Infinite or Zero primes

Is it always ZERO of INFINITE?

1. \mathbb{Z} and \mathbb{G} have an INFINITE number of primes.
2. \mathbb{Q} and \mathbb{R} and \mathbb{C} have ZERO primes.

Vote TRUE or FALSE or UNKNOWN TO SCIENCE: Every Integral Domain has either Infinite or Zero primes Answer on the next page.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\frac{b}{a}: b \not \equiv 0 \quad(\bmod 2)\right\}
$$

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\frac{b}{a}: b \not \equiv 0 \quad(\bmod 2)\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$. $\frac{2}{3}$?

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$. $\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$. $\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$. $\frac{2}{L}$?

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.
$\frac{4}{3}$?

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.
$\frac{4}{3}$? Not prime: $\frac{4}{3}=2 \times \frac{2}{3}$.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.
$\frac{4}{3}$? Not prime: $\frac{4}{3}=2 \times \frac{2}{3}$.
$\frac{4 M}{L}$?

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.
$\frac{4}{3}$? Not prime: $\frac{4}{3}=2 \times \frac{2}{3}$.
$\frac{4 M}{L}$? Not prime: $\frac{4 M}{L}=2 \times \frac{2 M}{3}$.

\exists an Integral Domain With Exactly One Prime

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge b \not \equiv 0 \quad(\bmod 2)\right\}
$$

1. Need to show that \mathbb{D} is closed under + and \times. HW.
2. Units

$$
\mathbb{U}=\left\{\begin{array}{ll}
\frac{b}{a}: b \not \equiv 0 & (\bmod 2)
\end{array}\right\}
$$

3. Non-Units

$$
\mathbb{N U}=\left\{\frac{b}{a}: b \equiv 0 \quad(\bmod 2)\right\}
$$

4. Primes: 2. Are there any others? Only look at $\mathbb{N} \mathbb{U}$.
$\frac{2}{3}$? Its prime but $\frac{2 / 3}{2}=\frac{1}{3} \in \mathbb{U}$.
$\frac{2}{L}$? Its prime but $\frac{2 / L}{2}=\frac{1}{L} \in \mathbb{U}$.
$\frac{4}{3}$? Not prime: $\frac{4}{3}=2 \times \frac{2}{3}$.
$\frac{4 M}{L}$? Not prime: $\frac{4 M}{L}=2 \times \frac{2 M}{3}$.
So only one prime!

Are ZERO, ONE, INFINITY the Only Possibilities?

Vote Is the following
TRUE or FALSE or UNKNOWN TO SCIENCE:

Are ZERO, ONE, INFINITY the Only Possibilities?

Vote Is the following
TRUE or FALSE or UNKNOWN TO SCIENCE:
Every Integral Domain has either Zero, One, or Infinitely Many Primes

Are ZERO, ONE, INFINITY the Only Possibilities?

Vote Is the following
TRUE or FALSE or UNKNOWN TO SCIENCE:
Every Integral Domain has either Zero, One, or Infinitely Many Primes
Next Slide has Answer.

\exists an Integral Domain With Exactly k Primes

We describe a domain with 4 primes.

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge\right.
$$

- $b \not \equiv 0(\bmod 2) \wedge$
- $b \not \equiv 0(\bmod 3) \wedge$
- $b \not \equiv 0(\bmod 5) \wedge$
- $b \not \equiv 0(\bmod 7)$

\exists an Integral Domain With Exactly k Primes

We describe a domain with 4 primes.

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge\right.
$$

- $b \not \equiv 0(\bmod 2) \wedge$
- $b \not \equiv 0(\bmod 3) \wedge$
- $b \not \equiv 0(\bmod 5) \wedge$
- $b \not \equiv 0(\bmod 7)$

The only primes are $2,3,5,7$. Proof is like to prior domain.

\exists an Integral Domain With Exactly k Primes

We describe a domain with 4 primes.

$$
\mathbb{D}=\left\{\frac{a}{b}: a, b \in \mathbb{Z} \wedge\right.
$$

- $b \not \equiv 0(\bmod 2) \wedge$
- $b \not \equiv 0(\bmod 3) \wedge$
- $b \not \equiv 0(\bmod 5) \wedge$
- $b \not \equiv 0(\bmod 7)$

The only primes are 2,3,5,7. Proof is like to prior domain. Simila: Can get an integral domain with exactly k primes.

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.
3. The Algebraic Integers (I won't go into that).

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.
3. The Algebraic Integers (I won't go into that).
4. The p-adic integers (I won't go into that).

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.
3. The Algebraic Integers (I won't go into that).
4. The p-adic integers (I won't go into that).
5. There are the only ones KNOWN TO BILL.

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.
3. The Algebraic Integers (I won't go into that).
4. The p-adic integers (I won't go into that).
5. There are the only ones KNOWN TO BILL.

Research Project Look at all 164 proofs that the primes are infinite. See where they fail when you try to apply them to the domains above.

Other Domains with an Finite Number of Primes

Types of integral domains with a finite number of primes:

1. Integral domains like \mathbb{Q} : Everything is a unit.
2. Integral domains of the type above that have k primes.
3. The Algebraic Integers (I won't go into that).
4. The p-adic integers (I won't go into that).
5. There are the only ones KNOWN TO BILL.

Research Project Look at all 164 proofs that the primes are infinite. See where they fail when you try to apply them to the domains above.

I've already done this with my proof that primes are infinite that uses Fermat's Last Theorem ($n=3$ case) and Schur's Theorem (From Ramsey Theory).

