$5^{1 / 3}$ is irrational

250H

Prove $5^{1 / 3}$ is irrational

Prove $5^{1 / 3}$ is irrational

Proof: For the sake of contradiction assume $5^{1 / 3}$ is rational. If $5^{1 / 3}$ is rational then,

$$
5^{1 / 3}=\frac{p}{q}
$$

where $p, q \in \mathbb{Z}$ and $q \neq 0$ and there are no common factors between p and q.

Prove $5^{1 / 3}$ is irrational

Proof: For the sake of contradiction assume $5^{1 / 3}$ is rational. If $5^{1 / 3}$ is rational then,

$$
5^{1 / 3}=\frac{p}{q}
$$

where $p, q \in \mathbb{Z}$ and $q \neq 0$ and there are no common factors between p and q. So we have,

$$
\begin{gathered}
5^{1 / 3} q=p \\
5 q^{3}=p^{3}
\end{gathered}
$$

Prove $5^{1 / 3}$ is irrational

So we have,

$$
\begin{gathered}
5^{1 / 3} q=p \\
5 q^{3}=p^{3}
\end{gathered}
$$

Thus, $5 \mid p$ and $p=5 x$ for $x \in \mathbb{Z}$. Therefore we have,

$$
\begin{aligned}
5 q^{3} & =(5 x)^{3} \\
5 q^{3} & =125 x^{3}
\end{aligned}
$$

Prove $5^{1 / 3}$ is irrational

So we have,

$$
\begin{gathered}
5^{1 / 3} q=p \\
5 q^{3}=p^{3}
\end{gathered}
$$

Thus, $5 \mid p$ and $p=5 x$ for $x \in \mathbb{Z}$. Therefore we have,

$$
\begin{aligned}
& 5 q^{3}=(5 x)^{3} \\
& 5 q^{3}=125 x^{3}
\end{aligned}
$$

However, this means q^{3} has to be divisible by 5 . Hence we have a contradiction since we stated that p and q have no common factors. Therefore, $5^{1 / 3}$ is irrational. D

Prove $5^{1 / 3}$ is irrational

Proof: For the sake of contradiction assume that $5^{1 / 3}=\frac{a}{b}$. So

$$
\begin{gathered}
5=\frac{a^{3}}{b^{3}} \\
5 b^{3}=a^{3}
\end{gathered}
$$

Prove $5^{1 / 3}$ is irrational

Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b. (We do not know or care if 5 is one of the p_{i} 's.) Then by Unique factorization there is a unique a_{1}, \ldots, a_{L} and b_{1}, \ldots, b_{L} such that

$$
\begin{aligned}
a & =p_{1}^{a_{1}} \cdots p_{L}^{a_{L}} \\
b & =p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}
\end{aligned}
$$

Prove $5^{1 / 3}$ is irrational

$$
\begin{aligned}
& a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}} \\
& b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}
\end{aligned}
$$

So

$$
5 p_{1}^{3 b_{1}} \cdots p_{L}^{3 b_{L}}=p_{1}^{3 a_{1}} \cdots p_{L}^{3 a_{L}} .
$$

Let $L H S$ be the number of times 5 appears on the left. $L H S \equiv 1(\bmod 3)$.
Let $R H S$ be the number of times 5 appears on the right. RHS $\equiv 0(\bmod 3)$. Since $L H S=R H S$, we have a contradiction. D)

