Rev For Mid1: Proofs

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Review of Mods and GCD

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

The symbol | means **divides**.

The symbol | means **divides**. Two equivalent definitions of Mod

The symbol | means **divides**.

Two equivalent definitions of Mod

1. $a \equiv b \pmod{m}$ means *m* divides b - a.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The symbol | means divides.

Two equivalent definitions of Mod

- 1. $a \equiv b \pmod{m}$ means *m* divides b a.
- 2. The remainder when you divide a by m or b by m is the same.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

The symbol | means **divides**.

Two equivalent definitions of Mod

- 1. $a \equiv b \pmod{m}$ means *m* divides b a.
- 2. The remainder when you divide a by m or b by m is the same.

We usually think of $a \equiv b \pmod{m}$ to mean that

The symbol | means **divides**.

Two equivalent definitions of Mod

- 1. $a \equiv b \pmod{m}$ means *m* divides b a.
- 2. The remainder when you divide a by m or b by m is the same.

We usually think of $a \equiv b \pmod{m}$ to mean that a is large and

The symbol | means **divides**.

Two equivalent definitions of Mod

- 1. $a \equiv b \pmod{m}$ means *m* divides b a.
- 2. The remainder when you divide a by m or b by m is the same.

ション ふゆ アメビア メロア しょうくしゃ

We usually think of $a \equiv b \pmod{m}$ to mean that *a* is large and $0 \le b \le m - 1$ (so small).

Do Examples of Mods

I ask random people in the class what a is congruent to mod m.

(ロト (個) (E) (E) (E) (E) のへの

Theorem Assume $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem Assume $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$.

Then:

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Theorem Assume $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Then:

1. $a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$.

Theorem Assume $a_1 \equiv b_1 \pmod{m}$ and $a_2 \equiv b_2 \pmod{m}$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Then:

1.
$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$$
.
2. $a_1 a_2 \equiv b_1 b_2 \pmod{m}$.

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$. That would be insane!

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$. That would be insane! Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7.

ション ふゆ アメビア メロア しょうくしゃ

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}]$. **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider **all** $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1$.

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}]$. **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider **all** $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1$. 0) $0^7 \equiv 0$. YES

ション ふぼう メリン メリン しょうくしゃ

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider **all** $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1.$ 0) $0^7 \equiv 0$. YES 1) $1^7 \equiv 1$. YES

ション ふぼう メリン メリン しょうくしゃ

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider **all** $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1.$ 0) $0^7 \equiv 0$. YES 1) $1^7 \equiv 1$. YES 2) $2^7 \equiv 2^3 \times 2^3 \times 2 \equiv 1 \times 1 \times 2 \equiv 2$. YES

・ロト・西・・日・・日・・日・

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider **all** $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1.$ 0) $0^7 \equiv 0$. YES 1) $1^7 \equiv 1$. YES 2) $2^7 \equiv 2^3 \times 2^3 \times 2 \equiv 1 \times 1 \times 2 \equiv 2$. YES 3) $3^7 \equiv 3^3 \times 3^3 \times 3 \equiv -1 \times -1 \times 3 \equiv 3$. YES

ション ふぼう メリン メリン しょうくしゃ

Theorem $(\forall a \in \mathbb{N})[a^7 \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$. That would be **insane!** Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1, 3^3 \equiv -1, 4^3 \equiv 1, 5^3 \equiv -1, 6^3 \equiv 1.$ 0) $0^7 \equiv 0$. YES 1) $1^7 \equiv 1$. YES 2) $2^7 \equiv 2^3 \times 2^3 \times 2 \equiv 1 \times 1 \times 2 \equiv 2$. YES 3) $3^7 \equiv 3^3 \times 3^3 \times 3 \equiv -1 \times -1 \times 3 \equiv 3$. YES 4) $4^7 \equiv 4^3 \times 4^3 \times 4 \equiv 1 \times 1 \times 4 \equiv 4$. YES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Theorem $(\forall a \in \mathbb{N})[a' \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$. That would be insane! Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1$, $3^3 \equiv -1$, $4^3 \equiv 1$, $5^3 \equiv -1$, $6^3 \equiv 1$. 0) $0^7 \equiv 0.$ YES 1) $1^7 \equiv 1$. YES 2) $2^7 \equiv 2^3 \times 2^3 \times 2 \equiv 1 \times 1 \times 2 \equiv 2$. YES 3) $3^7 \equiv 3^3 \times 3^3 \times 3 \equiv -1 \times -1 \times 3 \equiv 3$. YES 4) $4^7 \equiv 4^3 \times 4^3 \times 4 \equiv 1 \times 1 \times 4 \equiv 4$. YES 5) $5^7 \equiv 5^3 \times 5^3 \times 5 \equiv -1 \times -1 \times 5 \equiv 5$. YES

ション ふぼう メリン メリン しょうくしゃ

Theorem $(\forall a \in \mathbb{N})[a' \equiv a \pmod{7}].$ **Note** The theorem is about ALL $a \in \mathbb{N}$. Do we have to consider all $a \in \mathbb{N}$. That would be insane! Only consider $a \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{7}$. All \equiv are mod 7. We'll need: $2^3 \equiv 1$, $3^3 \equiv -1$, $4^3 \equiv 1$, $5^3 \equiv -1$, $6^3 \equiv 1$. 0) $0^7 \equiv 0.$ YES 1) $1^7 \equiv 1$. YES 2) $2^7 \equiv 2^3 \times 2^3 \times 2 \equiv 1 \times 1 \times 2 \equiv 2$. YES 3) $3^7 \equiv 3^3 \times 3^3 \times 3 \equiv -1 \times -1 \times 3 \equiv 3$. YES 4) $4^7 \equiv 4^3 \times 4^3 \times 4 \equiv 1 \times 1 \times 4 \equiv 4$. YES 5) $5^7 \equiv 5^3 \times 5^3 \times 5 \equiv -1 \times -1 \times 5 \equiv 5$. YES 6) $6^7 \equiv 6^3 \times 6^3 \times 6 \equiv 1 \times 1 \times 6 \equiv 6$. YES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○○

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

```
Can compute a^n \pmod{m} in \leq 2 \log n steps.
3^{100} \pmod{13}.
```


Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. 3¹⁰⁰ (mod 13). DO WITH YOUR NEIGHBOR.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

Can compute $a^n \pmod{m}$ in $\le 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$

・ロト・日本・日本・日本・日本・日本

Can compute $a^n \pmod{m}$ in $\le 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$ $3^{2^2} \equiv (3^{2^1})^2 \equiv 9^2 \equiv 81 \equiv 3$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$ $3^{2^2} \equiv (3^{2^1})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^4} \equiv (3^{2^2})^2 \equiv 3^2 \equiv 9$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●
Powering Fast

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$ $3^{2^2} \equiv (3^{2^1})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^4} \equiv (3^{2^2})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^5} \equiv (3^{2^3})^2 \equiv 9^2 \equiv 81 \equiv 3$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Powering Fast

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. $3^{100} \pmod{13}$. DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$ $3^{2^2} \equiv (3^{2^1})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^4} \equiv (3^{2^2})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^5} \equiv (3^{2^5})^2 \equiv 9^2 \equiv 81 \equiv 3$. $3^{2^6} \equiv (3^{2^5})^2 \equiv 3^2 \equiv 9$.

・ロト・西・・田・・日・・日・

Powering Fast

Can compute $a^n \pmod{m}$ in $\leq 2 \log n$ steps. 3¹⁰⁰ (mod 13). DO WITH YOUR NEIGHBOR. **Step One** $100 = 2^6 + 2^5 + 2^2$. So $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2}$. **Step Two** Repeated Squaring $3^{2^0} \equiv 3$ $3^{2^1} \equiv 9$ $3^{2^2} \equiv (3^{2^1})^2 \equiv 9^2 \equiv 81 \equiv 3.$ $3^{2^4} \equiv (3^{2^2})^2 \equiv 3^2 \equiv 9.$ $3^{2^5} \equiv (3^{2^3})^2 \equiv 9^2 \equiv 81 \equiv 3.$ $3^{2^6} \equiv (3^{2^5})^2 \equiv 3^2 \equiv 9.$ **Step Three** $3^{100} = 3^{2^6} \times 3^{2^5} \times 3^{2^2} \equiv 9 \times 3 \times 3 \equiv 27 \times 3 \equiv 3$.

・ロト・日本・日本・日本・日本・日本

Greatest Common Divisor (GCD)

Definition The **Greatest Common Divisor** of x, y is the largest number that divides both x and y. We denote this GCD(x, y).

Greatest Common Divisor (GCD)

Definition The **Greatest Common Divisor** of x, y is the largest number that divides both x and y. We denote this GCD(x, y).

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Do Examples with the class.

Assume x < y. Then

Assume x < y. Then

$$\operatorname{GCD}(x, y) = \operatorname{GCD}(x, y - x)$$

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Assume x < y. Then

$$\operatorname{GCD}(x, y) = \operatorname{GCD}(x, y - x)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Better Remove the largest multiple of x that is $\leq y$.

Assume x < y. Then

$$\operatorname{GCD}(x, y) = \operatorname{GCD}(x, y - x)$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Better Remove the largest multiple of x that is $\leq y$. Have class do an example.

Proof by Example

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Theorem
$$(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$$

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x. x = 7. We show 7 is not the sum of 3 squares. Cases.

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x. x = 7. We show 7 is not the sum of 3 squares. Cases. **Case 1** At least one of a, b, c is ≥ 3 . Then $a^2 + b^2 + c^2 \geq 9 > 7$.

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x. x = 7. We show 7 is not the sum of 3 squares. Cases. **Case 1** At least one of a, b, c is ≥ 3 . Then $a^2 + b^2 + c^2 \geq 9 > 7$. **Case 2** At least two of a, b, c are > 2. Then $a^2 + b^2 + c^2 > 8 > 7$.

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x. x = 7. We show 7 is not the sum of 3 squares. Cases. **Case 1** At least one of a, b, c is ≥ 3 . Then $a^2 + b^2 + c^2 \geq 9 > 7$. **Case 2** At least two of a, b, c are ≥ 2 . Then $a^2 + b^2 + c^2 \geq 8 > 7$. **Case 3** The only case left: at most 1 of a, b, c is 2. Then $a^2 + b^2 + c^2 \leq 4 + 1 + 1 = 6 < 7$.

Theorem $(\exists x)[\neg(\exists a, b, c)[x = a^2 + b^2 + c^2]]$ To prove a $\exists x$ give x and prove the thm for x. x = 7. We show 7 is not the sum of 3 squares. Cases. **Case 1** At least one of a, b, c is ≥ 3 . Then $a^2 + b^2 + c^2 \geq 9 > 7$. **Case 2** At least two of a, b, c are ≥ 2 . Then $a^2 + b^2 + c^2 \geq 9 > 7$. **Case 3** The only case left: at most 1 of a, b, c is 2. Then $a^2 + b^2 + c^2 \leq 4 + 1 + 1 = 6 < 7$.

Upshot For $\exists x$ Theorems SHOW THE x. (Nonconstructive proofs are possible though rare for this course.)

Irrationals

・ロト・西ト・ヨト・ヨー うへぐ

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7. Lemma $(\forall n)[n^3 \equiv 0 \pmod{7}) \rightarrow n \equiv 0 \pmod{7}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7. Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$. Take Contrapositive:

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7. **Lemma** $(\forall n)[n^3 \equiv 0 \pmod{7}) \rightarrow n \equiv 0 \pmod{7}]$. Take Contrapositive: $(\forall n)[n \neq 0 \pmod{7}) \rightarrow n^3 \neq 0 \pmod{7}]$. 7 cases

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7. Lemma $(\forall n)[n^3 \equiv 0 \pmod{7}) \rightarrow n \equiv 0 \pmod{7}]$. Take Contrapositive: $(\forall n)[n \not\equiv 0 \pmod{7}) \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.

Want
$$7^{1/3} \notin \mathbb{Q}$$
. We need the Lemma. All \equiv is mod 7.
Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$.
Take Contrapositive:
 $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases
 $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.
 $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Want
$$7^{1/3} \notin \mathbb{Q}$$
. We need the Lemma. All \equiv is mod 7.
Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$.
Take Contrapositive:
 $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases
 $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.
 $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0$.
 $n \equiv 3 \rightarrow n^3 \equiv 27 \equiv 6 \neq 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Want
$$7^{1/3} \notin \mathbb{Q}$$
. We need the Lemma. All \equiv is mod 7.
Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$.
Take Contrapositive:
 $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases
 $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.
 $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0$.
 $n \equiv 3 \rightarrow n^3 \equiv 27 \equiv 6 \neq 0$.
 $n \equiv 4 \rightarrow n^3 \equiv (-3)^3 \equiv -3^3 \equiv -6 \equiv 1 \not\equiv 0$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Want
$$7^{1/3} \notin \mathbb{Q}$$
. We need the Lemma. All \equiv is mod 7.
Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$.
Take Contrapositive:
 $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases
 $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.
 $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0$.
 $n \equiv 3 \rightarrow n^3 \equiv 27 \equiv 6 \neq 0$.
 $n \equiv 4 \rightarrow n^3 \equiv (-3)^3 \equiv -3^3 \equiv -6 \equiv 1 \neq 0$.
 $n \equiv 5 \rightarrow n^3 \equiv (-2)^3 \equiv -2^3 \equiv -1 \equiv 6 \neq 0$.

Want
$$7^{1/3} \notin \mathbb{Q}$$
. We need the Lemma. All \equiv is mod 7.
Lemma $(\forall n)[n^3 \equiv 0 \pmod{7} \rightarrow n \equiv 0 \pmod{7}]$.
Take Contrapositive:
 $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases
 $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0$.
 $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0$.
 $n \equiv 3 \rightarrow n^3 \equiv 27 \equiv 6 \neq 0$.
 $n \equiv 4 \rightarrow n^3 \equiv (-3)^3 \equiv -3^3 \equiv -6 \equiv 1 \neq 0$.
 $n \equiv 5 \rightarrow n^3 \equiv (-2)^3 \equiv -2^3 \equiv -1 \equiv 6 \neq 0$.
 $n \equiv 6 \rightarrow n^3 \equiv (-1)^3 \equiv -1 \equiv 6 \neq 0$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへの

Want $7^{1/3} \notin \mathbb{Q}$. We need the Lemma. All \equiv is mod 7. Lemma $(\forall n)[n^3 \equiv 0 \pmod{7}) \rightarrow n \equiv 0 \pmod{7}]$. Take Contrapositive: $(\forall n)[n \not\equiv 0 \pmod{7} \rightarrow n^3 \not\equiv 0 \pmod{7}]$. 7 cases $n \equiv 1 \rightarrow n^3 \equiv 1 \neq 0.$ $n \equiv 2 \rightarrow n^3 \equiv 8 \equiv 1 \neq 0.$ $n \equiv 3 \rightarrow n^3 \equiv 27 \equiv 6 \neq 0.$ $n \equiv 4 \rightarrow n^3 \equiv (-3)^3 \equiv -3^3 \equiv -6 \equiv 1 \neq 0.$ $n \equiv 5 \rightarrow n^3 \equiv (-2)^3 \equiv -2^3 \equiv -1 \equiv 6 \neq 0.$ $n \equiv 6 \rightarrow n^3 \equiv (-1)^3 \equiv -1 \equiv 6 \not\equiv 0.$ Proof of Lemma is done. Next slide is proof of irrationality.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$.

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @
Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists a, b in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c. $7b^3 = a^3 = (7c)^3 = 7^3c^3$.

ション ふぼう メリン メリン しょうくしゃ

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c. $7b^3 = a^3 = (7c)^3 = 7^3c^3$. $b^3 = 7^2c^3$.

ション ふぼう メリン メリン しょうくしゃ

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists a, b in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c. $7b^3 = a^3 = (7c)^3 = 7^3c^3$. $b^3 = 7^2c^3$. By Lemma $b \equiv 0$.

Want $7^{1/3} \notin \mathbb{Q}$. Assume BWOC that $7^{1/3} \in \mathbb{Q}$. So there exists *a*, *b* in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c. $7b^3 = a^3 = (7c)^3 = 7^3c^3$. $b^3 = 7^2c^3$. By Lemma $b \equiv 0$. AH-HA! 7 divides both *a* and *b*. So *a*, *b* not in lowest terms.

ション ふぼう メリン メリン しょうくしゃ

Want $7^{1/3} \notin \mathbb{O}$. Assume BWOC that $7^{1/3} \in \mathbb{O}$. So there exists a, b in lowest terms such that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ $a^3 \equiv 0$. By Lemma $a \equiv 0$. a = 7c. $7b^3 = a^3 = (7c)^3 = 7^3c^3$. $b^3 = 7^2 c^3$. By Lemma $b \equiv 0$. AH-HA! 7 divides both a and b. So a, b not in lowest terms. Contradiction!

ション ふぼう メリン メリン しょうくしゃ

The above proof is a template for these kinds of proofs.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. Step 1 Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: *a*, *b* in lowest terms.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^z x = a^z = (xc)^z = x^z c^z$

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: *a*, *b* in lowest terms. $bx^{1/z} = a$ $b^{z}x = a^{z}$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^{z}x = a^{z} = (xc)^{z} = x^{z}c^{z}$ $b^{z} = x^{z-1}c^{z}$

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^z x = a^z = (xc)^z = x^z c^z$ $b^z = x^{z-1}c^z$ $b \equiv 0 \pmod{x}$.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^z x = a^z = (xc)^z = x^z c^z$ $b^z = x^{z-1}c^z$ $b \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^z x = a^z = (xc)^z = x^z c^z$ $b^z = x^{z-1}c^z$ $b \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. AH-HA! x divides both a and b. So a, b not in lowest terms.

The above proof is a template for these kinds of proofs. To show $x^{1/z} \notin \mathbb{Q}$. **Step 1** Prove $(\forall n)[n^z \equiv 0 \pmod{x} \rightarrow n \equiv 0 \pmod{x}]$. Take Contrapositive $(\forall n)[n \not\equiv 0 \pmod{x} \rightarrow n^z \not\equiv 0 \pmod{x}]$. Prove by x - 1 cases.

Step 2 Assume, BWOC, that $x^{1/z} = \frac{a}{b}$: a, b in lowest terms. $bx^{1/z} = a$ $b^z x = a^z$ $a \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. a = xc. $b^z x = a^z = (xc)^z = x^z c^z$ $b^z = x^{z-1}c^z$ $b \equiv 0 \pmod{x}$. By Lemma $a \equiv 0 \pmod{x}$. AH-HA! x divides both a and b. So a, b not in lowest terms. Contradiction!

・ロト・西ト・モート 一日・ 今々で

For proofs of irrationality using mods:

For proofs of irrationality using mods:

1. The lemma is the only part that is not a template.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

For proofs of irrationality using mods:

1. The lemma is the only part that is not a template.

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目 | のへの

2. The lemma may have a lot of cases.

For proofs of irrationality using mods:

- 1. The lemma is the only part that is not a template.
- 2. The lemma may have a lot of cases.
- 3. If you are trying to prove a rational is irrational, the proof will fall apart in the lemma.

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$

・ロト・日本・モト・モト・モー うへぐ

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Want
$$7^{1/3} \notin \mathbb{Q}$$
. Assume, BWOC that
 $7^{1/3} = \frac{a}{b}$
 $b7^{1/3} = a$
 $7b^3 = a^3$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ Factor both sides $p_{ab} = p_{ab}$ is the set of p_{ab}

Factor both sides. p_1, \ldots, p_L is the set of primes that divide *a* or *b*.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide *a* or *b*. $b = p_1^{b_1} \cdots p_L^{b_L}$

ション ふぼう メリン メリン しょうくしゃ

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide a or b. $b = p_1^{b_1} \cdots p_L^{b_L}$ $a = p_1^{a_1} \cdots p_L^{a_L}$

ション ふぼう メリン メリン しょうくしゃ

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide a or b. $b = p_1^{b_1} \cdots p_L^{b_L}$ $a = p_1^{a_1} \cdots p_L^{a_L}$ $7p_1^{3b_1} \cdots p_L^{3b_L} = p_1^{3a_1} \cdots p_L^{3a_L}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○
Proving $7^{1/3} \notin \mathbb{Q}$ Using UFT

Want $7^{1/3} \notin \mathbb{Q}$. Assume, BWOC that $7^{1/3} = \frac{a}{b}$ $b7^{1/3} = a$ $7b^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide a or b. $b = p_1^{b_1} \cdots p_L^{b_L}$ $a = p_1^{a_1} \cdots p_L^{a_L}$ $7p_1^{3b_1} \cdots p_L^{3b_L} = p_1^{3a_1} \cdots p_L^{3a_L}$ The number of 7's on the LHS is $\equiv 1 \pmod{3}$.

・ロト・西ト・ヨト・ヨー シック

Proving $7^{1/3} \notin \mathbb{Q}$ Using UFT

Want $7^{1/3} \notin \mathbb{O}$. Assume, BWOC that $7^{1/3} = \frac{a}{L}$ $b7^{1/3} = a$ $7h^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide *a* or *b*. $b = p_1^{b_1} \cdots p_r^{b_r}$ $a = p_1^{a_1} \cdots p_l^{a_l}$ $7p_1^{3b_1}\cdots p_l^{3b_l} = p_1^{3a_1}\cdots p_l^{3a_l}$ The number of 7's on the LHS is $\equiv 1 \pmod{3}$. The number of 7's on the RHS is $\equiv 0 \pmod{3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Proving $7^{1/3} \notin \mathbb{Q}$ Using UFT

Want $7^{1/3} \notin \mathbb{O}$. Assume, BWOC that $7^{1/3} = \frac{a}{L}$ $b7^{1/3} = a$ $7h^3 = a^3$ Factor both sides. p_1, \ldots, p_L is the set of primes that divide *a* or *b*. $b = p_1^{b_1} \cdots p_r^{b_r}$ $a = p_1^{a_1} \cdots p_l^{a_l}$ $7p_1^{3b_1}\cdots p_l^{3b_l} = p_1^{3a_1}\cdots p_l^{3a_l}$ The number of 7's on the LHS is $\equiv 1 \pmod{3}$. The number of 7's on the RHS is $\equiv 0 \pmod{3}$. Contradiction.

・ロト ・母 ト ・ヨ ト ・ ヨ ・ の へ ()・

Proving Irrationality Using UFT

These proofs also have a very definite template.

Proving Irrationality Using UFT

These proofs also have a very definite template.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

On HW05 you will do this proof for \sqrt{p} .

Primes

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes. Consider the number $N = p_1 \cdots p_L + 1$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes. Consider the number $N = p_1 \cdots p_L + 1$. **Case 1** N is prime. Then since $(\forall i)[p_i < N]$ N is a prime NOT on the list of ALL primes. Contradiction.

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes. Consider the number $N = p_1 \cdots p_L + 1$. **Case 1** N is prime. Then since $(\forall i)[p_i < N]$ N is a prime NOT on the list of ALL primes. Contradiction. **Case 2** N is not prime. Let p be a prime factor of N.

ション ふぼう メリン メリン しょうくしゃ

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes. Consider the number $N = p_1 \cdots p_L + 1$. **Case 1** N is prime. Then since $(\forall i)[p_i < N] N$ is a prime NOT on the list of ALL primes. Contradiction. **Case 2** N is not prime. Let p be a prime factor of N. p cannot be any of the p_i since none of them divide N.

ション ふぼう メリン メリン しょうくしゃ

Theorem The number of primes is infinite. Assume, BWOC, that the number of primes is finite. Let p_1, \ldots, p_L be ALL of the primes.

Consider the number $N = p_1 \cdots p_l + 1$.

Case 1 *N* is prime. Then since $(\forall i)[p_i < N]$ *N* is a prime NOT on the list of ALL primes. Contradiction.

ション ふぼう メリン メリン しょうくしゃ

Case 2 N is not prime. Let p be a prime factor of N.

p cannot be any of the p_i since none of them divide N.

p is a prime NOT on the list of ALL primes. Contradiction.