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Review of Mods and
GCD



Mods

The symbol | means divides.

Two equivalent definitions of Mod

1. a ≡ b (mod m) means m divides b − a.

2. The remainder when you divide a by m or b by m is the same.

We usually think of a ≡ b (mod m) to mean that
a is large and
0 ≤ b ≤ m − 1 (so small).
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Do Examples of Mods

I ask random people in the class what a is congruent to mod m.



Addition and Mult with Mods

Theorem Assume
a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m).

Then:

1. a1 + a2 ≡ b1 + b2 (mod m).

2. a1a2 ≡ b1b2 (mod m).
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Using ≡ in Easy Proofs

Theorem (∀a ∈ N)[a7 ≡ a (mod 7)].

Note The theorem is about ALL a ∈ N.
Do we have to consider all a ∈ N. That would be insane!
Only consider a ≡ 0, 1, 2, 3, 4, 5, 6 (mod 7). All ≡ are mod 7.
We’ll need: 23 ≡ 1, 33 ≡ −1, 43 ≡ 1, 53 ≡ −1, 63 ≡ 1.
0) 07 ≡ 0. YES
1) 17 ≡ 1. YES
2) 27 ≡ 23 × 23 × 2 ≡ 1× 1× 2 ≡ 2. YES
3) 37 ≡ 33 × 33 × 3 ≡ −1×−1× 3 ≡ 3. YES
4) 47 ≡ 43 × 43 × 4 ≡ 1× 1× 4 ≡ 4. YES
5) 57 ≡ 53 × 53 × 5 ≡ −1×−1× 5 ≡ 5. YES
6) 67 ≡ 63 × 63 × 6 ≡ 1× 1× 6 ≡ 6. YES
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Powering Fast

Can compute an (mod m) in ≤ 2 log n steps.

3100 (mod 13). DO WITH YOUR NEIGHBOR.
Step One 100 = 26 + 25 + 22. So 3100 = 32

6 × 32
5 × 32

2
.

Step Two Repeated Squaring
32

0 ≡ 3
32

1 ≡ 9
32

2 ≡ (32
1
)2 ≡ 92 ≡ 81 ≡ 3.

32
4 ≡ (32

2
)2 ≡ 32 ≡ 9.

32
5 ≡ (32

3
)2 ≡ 92 ≡ 81 ≡ 3.

32
6 ≡ (32

5
)2 ≡ 32 ≡ 9.

Step Three 3100 = 32
6 × 32

5 × 32
2 ≡ 9× 3× 3 ≡ 27× 3 ≡ 3.
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Greatest Common Divisor (GCD)

Definition The Greatest Common Divisor of x , y is the largest
number that divides both x and y . We denote this GCD(x , y) .

Do Examples with the class.
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Computing GCD

Assume x < y . Then

GCD(x , y) = GCD(x , y − x)

Better Remove the largest multiple of x that is ≤ y .
Have class do an example.
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Proof by Example



Proving a ∃x Theorem over Z

Theorem (∃x)[¬(∃a, b, c)[x = a2 + b2 + c2]]
To prove a ∃x give x and prove the thm for x .
x = 7. We show 7 is not the sum of 3 squares. Cases.
Case 1 At least one of a, b, c is ≥ 3. Then a2 + b2 + c2 ≥ 9 > 7.
Case 2 At least two of a, b, c are ≥ 2. Then a2 + b2 + c2 ≥ 8 > 7.
Case 3 The only case left: at most 1 of a, b, c is 2. Then
a2 + b2 + c2 ≤ 4 + 1 + 1 = 6 < 7.
Upshot For ∃x Theorems SHOW THE x . (Nonconstructive proofs
are possible though rare for this course.)
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Irrationals



Proving 71/3 /∈ Q Using Mods

Want 71/3 /∈ Q. We need the Lemma. All ≡ is mod 7.

Lemma (∀n)[n3 ≡ 0 (mod 7) → n ≡ 0 (mod 7)].
Take Contrapositive:
(∀n)[n ̸≡ 0 (mod 7) → n3 ̸≡ 0 (mod 7)]. 7 cases
n ≡ 1 → n3 ≡ 1 ̸= 0.
n ≡ 2 → n3 ≡ 8 ≡ 1 ̸= 0.
n ≡ 3 → n3 ≡ 27 ≡ 6 ̸= 0.
n ≡ 4 → n3 ≡ (−3)3 ≡ −33 ≡ −6 ≡ 1 ̸≡ 0.
n ≡ 5 → n3 ≡ (−2)3 ≡ −23 ≡ −1 ≡ 6 ̸≡ 0.
n ≡ 6 → n3 ≡ (−1)3 ≡ −1 ≡ 6 ̸≡ 0.
Proof of Lemma is done. Next slide is proof of irrationality.
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Proving 71/3 /∈ Q Using Mods (cont)

Want 71/3 /∈ Q. Assume BWOC that 71/3 ∈ Q.

So there exists a, b in lowest terms such that
71/3 = a

b

b71/3 = a
7b3 = a3

a3 ≡ 0. By Lemma a ≡ 0. a = 7c.
7b3 = a3 = (7c)3 = 73c3.
b3 = 72c3. By Lemma b ≡ 0.
AH-HA! 7 divides both a and b. So a, b not in lowest terms.
Contradiction!
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Irrationality Using Mods-Generalized

The above proof is a template for these kinds of proofs.

To show x1/z /∈ Q.
Step 1 Prove (∀n)[nz ≡ 0 (mod x) → n ≡ 0 (mod x)].
Take Contrapositive (∀n)[n ̸≡ 0 (mod x) → nz ̸≡ 0 (mod x)].
Prove by x − 1 cases.

Step 2 Assume, BWOC, that x1/z = a
b : a, b in lowest terms.

bx1/z = a
bzx = az

a ≡ 0 (mod x). By Lemma a ≡ 0 (mod x). a = xc .
bzx = az = (xc)z = xzcz

bz = xz−1cz

b ≡ 0 (mod x). By Lemma a ≡ 0 (mod x).
AH-HA! x divides both a and b. So a, b not in lowest terms.
Contradiction!
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The Hard Part is The Lemma

For proofs of irrationality using mods:

1. The lemma is the only part that is not a template.

2. The lemma may have a lot of cases.

3. If you are trying to prove a rational is irrational, the proof will
fall apart in the lemma.
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Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that

71/3 = a
b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a

7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.

b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL

a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL

7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL

The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).

The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).

Contradiction.



Proving 71/3 /∈ Q Using UFT

Want 71/3 /∈ Q. Assume, BWOC that
71/3 = a

b

b71/3 = a
7b3 = a3

Factor both sides. p1, . . . , pL is the set of primes that divide a or b.
b = pb11 · · · pbLL
a = pa11 · · · paLL
7p3b11 · · · p3bLL = p3a11 · · · p3aLL
The number of 7’s on the LHS is ≡ 1 (mod 3).
The number of 7’s on the RHS is ≡ 0 (mod 3).
Contradiction.



Proving Irrationality Using UFT

These proofs also have a very definite template.

On HW05 you will do this proof for
√
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Primes



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.

Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.

Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.

Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.

Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.

p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.

p is a prime NOT on the list of ALL primes. Contradiction.



Primes are Infinite

Theorem The number of primes is infinite.
Assume, BWOC, that the number of primes is finite.
Let p1, . . . , pL be ALL of the primes.
Consider the number N = p1 · · · pL + 1.
Case 1 N is prime. Then since (∀i)[pi < N] N is a prime NOT on
the list of ALL primes. Contradiction.
Case 2 N is not prime. Let p be a prime factor of N.
p cannot be any of the pi since none of them divide N.
p is a prime NOT on the list of ALL primes. Contradiction.


