
Using Unique
Factorization to Proof
Numbers Irrational



Recap of Unique Factorization

Thm Every n ∈ N factors into primes uniquely.



Proof that
√
7 /∈ Q Using UF

Assume, BWOC, that
√
7 = a

b .

7b2 = a2.

Factor b and a uniquely.
Let p1, . . . , pL be all of the primes that divide either a or b.

b = pb11 · · · pbLL .
a = pa11 · · · paLL .

7b2 = a2, so

7p2b11 · · · p2bLL = p2a11 · · · p2aLL

How often does 7 appear on LHS? Don’t know but its ODD.

How often does 7 appear on RHS? Don’t know but its EVEN.

Thats our contradiction!
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PROS and CONS of the two Proofs

We have seen two proofs that
√
7 /∈ Q.

MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique
Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.

2. PRO of the UF-proof: Short and does not need the a,b in
lowest terms.
CON of the MOD-proof: Has to assume a, b in lowest term
and don’t see why until the end.

Vote

▶ Prefer MOD proof.

▶ Prefer UF proof.
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Isn’t Z Having Unique Factorization Obvious?

We give an example of a domain that does not have unique
factorization.

D = {a+ b
√
−5: a, b ∈ Z}

6 = 2× 3

6 = (1 +
√
−5)(1−

√
−5)

So it looks like 6 factors two different ways.

But need that 2, 3, 1 +
√
−5, 1−

√
−5 are all primes.
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Proving Numbers in D are Primes

Recall If D is a domain then there are three kinds of numbers:

1. u is a unit if (∃u′)[uu′ = 1]. Only units of D: 1,−1.

2. x is a composite if x = yz where y , z are not units.

3. x is a prime if x = yz implies either y or z is a unit.

Norm N(a+ b
√
−5) = a2 + 5b2.

Thm
1) N(xy) = N(x)N(y). Just Algebra.
2) N(x) = 1 iff x is a unit. Just Algebra.
3) (∀x ∈ D)[N(x) ̸= 2]. Just Algebra.
4) (∀x ∈ D)[N(x) ̸= 3]. Just Algebra.
We use N to prove that 2, 3, 1 +

√
−5, 1−

√
−5 are all primes.

N is helpful since it maps elements of D (which we don’t
understand) to N (which we do understand).
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2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR
N(x) = 2-not possible OR
N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR
N(x) = 2-not possible OR
N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR

N(x) = 2-not possible OR
N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR
N(x) = 2-not possible OR

N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR
N(x) = 2-not possible OR
N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



2, 3 are Prime

If 2 = xy then

N(2) = N(xy) = N(x)N(y).

4 = N(xy) = N(x)N(y).

Either
N(x) = 4, so N(y) = 1: y is a unit OR
N(x) = 2-not possible OR
N(x) = 1 so x is a unit.

3 is prime: Similar to 2.



1+
√
−5, 1−

√
−5 are Prime

If 1 +
√
−5 = xy then

N(1 +
√
−5) = N(xy) = N(x)N(y)

6 = N(x)N(y).
Either
N(x) = 6, so N(y) = 1, y is a unit OR
N(x) = 3-not possible OR
N(x) = 2-not poss. OR
N(x) = 1 so x is a unit.

Proof for 1−
√
−5 is similar.
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What are the Primes of this D

Which elements of N are primes in D?

Is 9 a prime in D. NO, its not even a prime in N, 9 = 3× 3.

So only look at primes in N.

Is 23 a prime in D?

Next slide



What are the Primes of this D

Which elements of N are primes in D?
Is 9 a prime in D. NO, its not even a prime in N, 9 = 3× 3.

So only look at primes in N.

Is 23 a prime in D?

Next slide



What are the Primes of this D

Which elements of N are primes in D?
Is 9 a prime in D. NO, its not even a prime in N, 9 = 3× 3.

So only look at primes in N.

Is 23 a prime in D?

Next slide



Is 23 prime in D

IF 23 = (a+ b
√
−5)(c + d

√
−5).

N(23) = N(a+ b
√
−5)N(c + d

√
−5) = (a2 + 5b2)(c2 + 5d2).

232 = (a2 + 5b2)(c2 + 5d2).
529 = (a2 + 5b2)(c2 + 5d2).

Find all a, b, c , d ∈ N such that 529 = (a2 + 5b2)(c2 + 5d2)?
(Easy to compute! Just look for all 0 ≤ a, b, c , d ≤

√
529 = 23.

Can get better bounds on b, d but won’t bother.)

If the foll. happens then 23 is NOT PRIME: ∃0 ≤ a, b, c , d ≤ 23:

1. 529 = (a2 + 5b2)(c2 + 5d2).

2. a+ b
√
−5 ̸= 1 (so (a, b) ̸= (1, 0)).

3. a+ b
√
−5 ̸= −1 (so (a, b) ̸= (−1, 0)).
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Might Be a HW

1. Write a program that will, given p, determine if p is a prime
in N. If it is then determine if it is a prime in D by seeing if
p2 = (a2 + 5b2)(c2 + 5d2)]
has a solution with 1 ≤ a, b, c , d ≤ p and DO NOT have
(a, b) = (1, 0) or (a, b) = (−1, 0).

2. For all primes in N that are ≤ 1000 run the above program.
Produce a table of prime in D that are ≤ 1000.

3. Speculate how to fill this in:
p a prime in N is also a prime in D iff BLANK.
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Moral of the Story

1. Using UF we obtain a different proof that
√
7 /∈ Q. Technique

works for other proofs of irrationality.

2. UF is not obvious. Its false for D so the proof that Z has UF
would need to use properties of Z that D does not have. We
won’t be doing that proof, but you now know that it is worthy
of proof.
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