Using Unique Factorization to Proof Numbers Irrational

Recap of Unique Factorization

Thm Every $n \in \mathbb{N}$ factors into primes uniquely.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.
$7 b^{2}=a^{2}$, so

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.
$7 b^{2}=a^{2}$, so

$$
7 p_{1}^{2 b_{1}} \cdots p_{L}^{2 b_{L}}=p_{1}^{2 a_{1}} \cdots p_{L}^{2 a_{L}}
$$

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.
$7 b^{2}=a^{2}$, so

$$
7 p_{1}^{2 b_{1}} \cdots p_{L}^{2 b_{L}}=p_{1}^{2 a_{1}} \cdots p_{L}^{2 a_{L}}
$$

How often does 7 appear on LHS? Don't know but its ODD.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.
$7 b^{2}=a^{2}$, so

$$
7 p_{1}^{2 b_{1}} \cdots p_{L}^{2 b_{L}}=p_{1}^{2 a_{1}} \cdots p_{L}^{2 a_{L}}
$$

How often does 7 appear on LHS? Don't know but its ODD.
How often does 7 appear on RHS? Don't know but its EVEN.

Proof that $\sqrt{7} \notin \mathbb{Q}$ Using UF

Assume, BWOC, that $\sqrt{7}=\frac{a}{b}$.
$7 b^{2}=a^{2}$.
Factor b and a uniquely.
Let p_{1}, \ldots, p_{L} be all of the primes that divide either a or b.
$b=p_{1}^{b_{1}} \cdots p_{L}^{b_{L}}$.
$a=p_{1}^{a_{1}} \cdots p_{L}^{a_{L}}$.
$7 b^{2}=a^{2}$, so

$$
7 p_{1}^{2 b_{1}} \cdots p_{L}^{2 b_{L}}=p_{1}^{2 a_{1}} \cdots p_{L}^{2 a_{L}}
$$

How often does 7 appear on LHS? Don't know but its ODD.
How often does 7 appear on RHS? Don't know but its EVEN.
Thats our contradiction!

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$. MOD-proof and UF-proof.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.
2. PRO of the UF-proof: Short and does not need the a, b in lowest terms.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$. MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.
2. PRO of the UF-proof: Short and does not need the a, b in lowest terms.
CON of the MOD-proof: Has to assume a, b in lowest term and don't see why until the end.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.
2. PRO of the UF-proof: Short and does not need the a, b in lowest terms.
CON of the MOD-proof: Has to assume a, b in lowest term and don't see why until the end.

Vote

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.
2. PRO of the UF-proof: Short and does not need the a, b in lowest terms.
CON of the MOD-proof: Has to assume a, b in lowest term and don't see why until the end.

Vote

- Prefer MOD proof.

PROS and CONS of the two Proofs

We have seen two proofs that $\sqrt{7} \notin \mathbb{Q}$.
MOD-proof and UF-proof.

1. CON of the UF-proof: Relies on a hard theorem, Unique Factorization.
PRO of the MOD-proof: Does not rely on any hard theorem.
2. PRO of the UF-proof: Short and does not need the a, b in lowest terms.
CON of the MOD-proof: Has to assume a, b in lowest term and don't see why until the end.

Vote

- Prefer MOD proof.
- Prefer UF proof.

Isn't \mathbb{Z} Having Unique Factorization Obvious?

We give an example of a domain that does not have unique factorization.

Isn't \mathbb{Z} Having Unique Factorization Obvious?

We give an example of a domain that does not have unique factorization.

$$
D=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}
$$

Isn't \mathbb{Z} Having Unique Factorization Obvious?

We give an example of a domain that does not have unique factorization.

$$
\begin{gathered}
D=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \\
6=2 \times 3 \\
6=(1+\sqrt{-5})(1-\sqrt{-5})
\end{gathered}
$$

Isn't \mathbb{Z} Having Unique Factorization Obvious?

We give an example of a domain that does not have unique factorization.

$$
\begin{gathered}
D=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \\
6=2 \times 3 \\
6=(1+\sqrt{-5})(1-\sqrt{-5})
\end{gathered}
$$

So it looks like 6 factors two different ways.

Isn't \mathbb{Z} Having Unique Factorization Obvious?

We give an example of a domain that does not have unique factorization.

$$
\begin{gathered}
D=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\} \\
6=2 \times 3 \\
6=(1+\sqrt{-5})(1-\sqrt{-5})
\end{gathered}
$$

So it looks like 6 factors two different ways.
But need that $2,3,1+\sqrt{-5}, 1-\sqrt{-5}$ are all primes.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.
2) $N(x)=1$ iff x is a unit. Just Algebra.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.
2) $N(x)=1$ iff x is a unit. Just Algebra.
3) $(\forall x \in \mathbb{D})[N(x) \neq 2]$. Just Algebra.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.
2) $N(x)=1$ iff x is a unit. Just Algebra.
3) $(\forall x \in \mathbb{D})[N(x) \neq 2]$. Just Algebra.
4) $(\forall x \in \mathbb{D})[N(x) \neq 3]$. Just Algebra.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.
2) $N(x)=1$ iff x is a unit. Just Algebra.
3) $(\forall x \in \mathbb{D})[N(x) \neq 2]$. Just Algebra.
4) $(\forall x \in \mathbb{D})[N(x) \neq 3]$. Just Algebra.

We use N to prove that $2,3,1+\sqrt{-5}, 1-\sqrt{-5}$ are all primes.

Proving Numbers in \mathbb{D} are Primes

Recall If \mathbb{D} is a domain then there are three kinds of numbers:

1. u is a unit if $\left(\exists u^{\prime}\right)\left[u u^{\prime}=1\right]$. Only units of $\mathbb{D}: 1,-1$.
2. x is a composite if $x=y z$ where y, z are not units.
3. x is a prime if $x=y z$ implies either y or z is a unit.

Norm $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$.
Thm

1) $N(x y)=N(x) N(y)$. Just Algebra.
2) $N(x)=1$ iff x is a unit. Just Algebra.
3) $(\forall x \in \mathbb{D})[N(x) \neq 2]$. Just Algebra.
4) $(\forall x \in \mathbb{D})[N(x) \neq 3]$. Just Algebra.

We use N to prove that $2,3,1+\sqrt{-5}, 1-\sqrt{-5}$ are all primes.
N is helpful since it maps elements of \mathbb{D} (which we don't understand) to \mathbb{N} (which we do understand).

2,3 are Prime

If $2=x y$ then

2,3 are Prime

If $2=x y$ then

$$
\begin{gathered}
N(2)=N(x y)=N(x) N(y) . \\
4=N(x y)=N(x) N(y) .
\end{gathered}
$$

2,3 are Prime

If $2=x y$ then

$$
\begin{gathered}
N(2)=N(x y)=N(x) N(y) . \\
4=N(x y)=N(x) N(y) .
\end{gathered}
$$

Either
$N(x)=4$, so $N(y)=1: y$ is a unit OR

2,3 are Prime

If $2=x y$ then

$$
\begin{gathered}
N(2)=N(x y)=N(x) N(y) . \\
4=N(x y)=N(x) N(y) .
\end{gathered}
$$

Either
$N(x)=4$, so $N(y)=1: y$ is a unit OR
$N(x)=2$-not possible OR

2,3 are Prime

If $2=x y$ then

$$
\begin{gathered}
N(2)=N(x y)=N(x) N(y) . \\
4=N(x y)=N(x) N(y) .
\end{gathered}
$$

Either
$N(x)=4$, so $N(y)=1: y$ is a unit OR
$N(x)=2$-not possible OR
$N(x)=1$ so x is a unit.

2,3 are Prime

If $2=x y$ then

$$
\begin{gathered}
N(2)=N(x y)=N(x) N(y) . \\
4=N(x y)=N(x) N(y) .
\end{gathered}
$$

Either
$N(x)=4$, so $N(y)=1: y$ is a unit OR
$N(x)=2$-not possible OR
$N(x)=1$ so x is a unit.
3 is prime: Similar to 2 .

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.
Either
$N(x)=6$, so $N(y)=1, y$ is a unit OR

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.
Either
$N(x)=6$, so $N(y)=1, y$ is a unit OR $N(x)=3$-not possible OR

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.
Either
$N(x)=6$, so $N(y)=1, y$ is a unit OR $N(x)=3$-not possible OR
$N(x)=2$-not poss. OR

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.
Either
$N(x)=6$, so $N(y)=1, y$ is a unit OR
$N(x)=3$-not possible OR
$N(x)=2$-not poss. OR
$N(x)=1$ so x is a unit.

$1+\sqrt{-5}, 1-\sqrt{-5}$ are Prime

If $1+\sqrt{-5}=x y$ then
$N(1+\sqrt{-5})=N(x y)=N(x) N(y)$
$6=N(x) N(y)$.
Either
$N(x)=6$, so $N(y)=1, y$ is a unit OR
$N(x)=3$-not possible OR
$N(x)=2$-not poss. OR
$N(x)=1$ so x is a unit.
Proof for $1-\sqrt{-5}$ is similar.

What are the Primes of this \mathbb{D}

Which elements of \mathbb{N} are primes in \mathbb{D} ?

What are the Primes of this \mathbb{D}

Which elements of \mathbb{N} are primes in \mathbb{D} ?
Is 9 a prime in \mathbb{D}. NO, its not even a prime in $\mathbb{N}, 9=3 \times 3$.

What are the Primes of this \mathbb{D}

Which elements of \mathbb{N} are primes in \mathbb{D} ?
Is 9 a prime in \mathbb{D}. NO, its not even a prime in $\mathbb{N}, 9=3 \times 3$.
So only look at primes in \mathbb{N}.
Is 23 a prime in \mathbb{D} ?
Next slide

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.

Is 23 prime in \mathbb{D}

$$
\begin{aligned}
& \text { IF } 23=(a+b \sqrt{-5})(c+d \sqrt{-5}) \\
& N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right) \\
& 23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right) \\
& 529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)
\end{aligned}
$$

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
Find all $a, b, c, d \in \mathbb{N}$ such that $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$?
(Easy to compute! Just look for all $0 \leq a, b, c, d \leq \sqrt{529}=23$.
Can get better bounds on b, d but won't bother.)

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
Find all $a, b, c, d \in \mathbb{N}$ such that $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$?
(Easy to compute! Just look for all $0 \leq a, b, c, d \leq \sqrt{529}=23$. Can get better bounds on b, d but won't bother.)
If the foll. happens then 23 is NOT PRIME: $\exists 0 \leq a, b, c, d \leq 23$:

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
Find all $a, b, c, d \in \mathbb{N}$ such that $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$?
(Easy to compute! Just look for all $0 \leq a, b, c, d \leq \sqrt{529}=23$.
Can get better bounds on b, d but won't bother.)
If the foll. happens then 23 is NOT PRIME: $\exists 0 \leq a, b, c, d \leq 23$:

$$
\text { 1. } 529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right) \text {. }
$$

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
Find all $a, b, c, d \in \mathbb{N}$ such that $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$?
(Easy to compute! Just look for all $0 \leq a, b, c, d \leq \sqrt{529}=23$.
Can get better bounds on b, d but won't bother.)
If the foll. happens then 23 is NOT PRIME: $\exists 0 \leq a, b, c, d \leq 23$:

1. $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
2. $a+b \sqrt{-5} \neq 1($ so $(a, b) \neq(1,0))$.

Is 23 prime in \mathbb{D}

IF $23=(a+b \sqrt{-5})(c+d \sqrt{-5})$.
$N(23)=N(a+b \sqrt{-5}) N(c+d \sqrt{-5})=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$23^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
$529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
Find all $a, b, c, d \in \mathbb{N}$ such that $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$?
(Easy to compute! Just look for all $0 \leq a, b, c, d \leq \sqrt{529}=23$.
Can get better bounds on b, d but won't bother.)
If the foll. happens then 23 is NOT PRIME: $\exists 0 \leq a, b, c, d \leq 23$:

1. $529=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)$.
2. $a+b \sqrt{-5} \neq 1($ so $(a, b) \neq(1,0))$.
3. $a+b \sqrt{-5} \neq-1($ so $(a, b) \neq(-1,0))$.

Might Be a HW

1. Write a program that will, given p, determine if p is a prime in \mathbb{N}. If it is then determine if it is a prime in \mathbb{D} by seeing if $\left.p^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)\right]$
has a solution with $1 \leq a, b, c, d \leq p$ and DO NOT have $(a, b)=(1,0)$ or $(a, b)=(-1,0)$.

Might Be a HW

1. Write a program that will, given p, determine if p is a prime in \mathbb{N}. If it is then determine if it is a prime in \mathbb{D} by seeing if $\left.p^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)\right]$ has a solution with $1 \leq a, b, c, d \leq p$ and DO NOT have $(a, b)=(1,0)$ or $(a, b)=(-1,0)$.
2. For all primes in \mathbb{N} that are ≤ 1000 run the above program. Produce a table of prime in \mathbb{D} that are ≤ 1000.

Might Be a HW

1. Write a program that will, given p, determine if p is a prime in \mathbb{N}. If it is then determine if it is a prime in \mathbb{D} by seeing if $\left.p^{2}=\left(a^{2}+5 b^{2}\right)\left(c^{2}+5 d^{2}\right)\right]$ has a solution with $1 \leq a, b, c, d \leq p$ and DO NOT have $(a, b)=(1,0)$ or $(a, b)=(-1,0)$.
2. For all primes in \mathbb{N} that are ≤ 1000 run the above program. Produce a table of prime in \mathbb{D} that are ≤ 1000.
3. Speculate how to fill this in:
p a prime in \mathbb{N} is also a prime in \mathbb{D} iff BLANK.

Moral of the Story

Moral of the Story

1. Using UF we obtain a different proof that $\sqrt{7} \notin \mathbb{Q}$. Technique works for other proofs of irrationality.

Moral of the Story

1. Using UF we obtain a different proof that $\sqrt{7} \notin \mathbb{Q}$. Technique works for other proofs of irrationality.
2. UF is not obvious. Its false for \mathbb{D} so the proof that \mathbb{Z} has UF would need to use properties of \mathbb{Z} that \mathbb{D} does not have. We won't be doing that proof, but you now know that it is worthy of proof.
