Ciphers Where Alice and Bob do NOT need to Meet

Based on notes by William Gasarch

1 Our Goal

The following problem plagues all of the systems we have considered: Alice and Bob must meet in secret to establish a key.

Is there a way around this? Is there a way for Alice and Bob to NEVER meet, and yet establish a secret key? That is, can they, by talking *in public* establish a shared secret key?

The answer will be yes, assuming that whoever is listening in has some limits on what they can compute.

2 Needed Math

We'll use multiplication modulo p in the set $Z_p = \{1, 2, ..., p-1\}$, where p is a prime number. It will be useful to find an element $g \in Z_p$, called a "generator", for which the sequence $g^0, g^1, g^2, ..., g^{p-2}$, taken modulo p, contains all of the elements of Z_p .

Let's look at p = 11. Notice that

$$2^{0} \equiv 1 \mod 11$$

$$2^{1} \equiv 2 \mod 11$$

$$2^{2} \equiv 4 \mod 11$$

$$2^{3} \equiv 8 \mod 11$$

$$2^{4} \equiv 5 \mod 11$$

$$2^{5} \equiv 10 \mod 11$$

$$2^{6} \equiv 9 \mod 11$$

$$2^{7} \equiv 7 \mod 11$$

$$2^{8} \equiv 3 \mod 11$$

$$2^{9} \equiv 6 \mod 11$$

These calculations are not hard if you use that $2^n \equiv 2 \times 2^{n-1} \mod 11$. Notice that $\{2^0 \mod 11, 2^1 \mod 11, \dots, 2^9 \mod 11\} = \{1, 2, \dots, 10\}.$

Do all elements of Z_{11} generate the entire set? No:

5^0	$\equiv 1 \mod 11$
5^1	$\equiv 5 \mod{11}$
5^2	$\equiv 3 \mod{11}$
5^3	$\equiv 4 \mod 11$
5^4	$\equiv 9 \mod 11$
5^5	$\equiv 1 \bmod 11$
5^6	$\equiv 5 \mod{11}$
5^7	$\equiv 3 \mod{11}$
5^8	$\equiv 4 \mod 11$
5^{9}	$\equiv 9 \mod 11$

Notice that $\{5^0 \mod 11, 5^1 \mod 11, \dots, 5^9 \mod 11\} = \{1, 3, 4, 5, 9\}$. This is NOT all of Z_{11} .

Convention 2.1 We will be using a prime p. We will assume that p is LARGE but that $\log p$ is not too large. Hence if Eve needs a computation of p steps to crack a code we will consider it a good code. Even if Eve needs a computation of \sqrt{p} steps (or p^{ϵ} steps where $\epsilon > 0$) this is a long time and we will consider it a good code. Also, if Alice and Bob have to do operations that take $\log p$ steps, that's okay, they can do that. Even if they have to take $(\log p)^2$ (or some larger polynomial in $\log p$) thats okay, they can do that.

Convention 2.2 For the rest of this document when we say "roughly p" we will mean p^{ϵ} for some $\epsilon, \epsilon > 0$. When we say "roughly $\log p$ " we will mean $(\log p)^a$ for some $a \in N$.

Theorem 2.3 For every prime p there is a g such that $\{g^0 \mod p, g^1 \mod p, \ldots, g^{p-2} \mod p\} = Z_p = \{1, \ldots, p-1\}$. There is an algorithm which will, given p, find such a generator g in roughly $\log p$ steps.

We have already seen that $+, -, \times$, and (if p is prime) division can be done modulo p. We now have a way to do LOGARITHMS modulo p.

Definition 2.4 Let p be a prime and g be a generator of Z_p . Let $x \in Z_p$. The *Discrete Logarithm of* x with base g is the $y \in \{0, \ldots, p-2\}$ such that $g^y \equiv x \mod p$. We denote this $DL_g(x)$.

Example 2.5 We rewrite the table above for p = 11 and add to it. The Discrete Logarithm lines follow from the prior line. We assume g = 2 and denote DL_2 by just DL.

 $2^0 \equiv 1 \mod 11$ DL(1) = 0 $2^1 \equiv 2 \mod 11$ DL(2) = 1 2^2 $\equiv 4 \mod 11$ DL(4) = 2 2^3 $\equiv 8 \mod 11$ DL(8) = 3 2^{4} $\equiv 5 \mod 11$ DL(5)= 4 2^{5} $\equiv 10 \mod 11$ DL(10) = 5 2^{6} $\equiv 9 \mod 11$ DL(9) = 6 2^{7} $\equiv 7 \bmod 11$ DL(7) = 7 2^{8} $\equiv 3 \mod{11}$ DL(3) = 8 2^{9} $\equiv 6 \mod 11$ DL(6) = 9

COMMON BELIEF: It is believed that the problem of computing the discrete logarithm *requires* roughly p steps. This is a long time, so we assume Eve cannot do this.

Fact 2.6 1. Given p, finding a generator for Z_p can be done in roughly $\log p$ steps.

- 2. Given L, finding a prime of size around L can be done in roughtly $\log L$ steps.
- 3. Given $p, a \in \{0, 1, \dots, p-1\}$, and m, determining $a^m \mod p$ takes roughly $\log m$ steps. (This is by repeated squaring.)

3 Diffie Helman Key Exchange

We can USE this mathematics to have Alice and Bob exchange information in public and in the end they have a shared secret key.

- 1. Alice generates a large prime p and a generator g (this takes roughly log p steps) and sends it to Bob over an open channel. So now Alice and Bob know p, g but so does Eve.
- 2. Alice generates a random $a \in \{0, \ldots, p-2\}$. Bob generates a random $b \in \{0, \ldots, p-2\}$. They keep these numbers private. Note that even Alice does not know b, and even Bob does not know a.
- 3. Alice computes $g^a \mod p$. Bob computes $g^b \mod p$. Both use repeated squaring so it takes roughly $\log p$.
- 4. Alice sends Bob $g^a \mod p$ over an open channel. Notice that Eve will NOT be able to compute a if computing DL_g is hard (which is the common belief). Even Bob won't know what a is.
- 5. Bob sends Alice $g^b \mod p$. Notice that Eve will NOT be able to compute b if computing DL_q is hard. Even Alice won't know what b is.
- 6. RECAP: Alice now has a and g^b . SHE DOES NOT HAVE b. Bob has b and g^a . HE DOES NOT HAVE a. Eve has g^a and b^b . SHE DOES NOT HAVE a OR b.
- 7. Alice computes $(g^b)^a \mod p = g^{ab} \mod p$. Bob computes $(g^a)^b \mod p = g^{ab} \mod p$. They both use repeated squaring so this is fast.
- 8. SO at the end of the protocol they BOTH know $g^{ab} \mod p$. This is their shared secret key. Eve likely does NOT know g^{ab} since she only gets to see g^a and g^b .

This scheme LOOKS good but we must be very careful about what is known about it.

- 1. Alice and Bob can execute the scheme quickly.
- 2. If Eve can compute DL_q quickly then she can crack the code.
- 3. There MIGHT BE other ways for Eve to crack the code. That is, being able to compute DL_g quickly is sufficient to crack this scheme, but might not be neccessary.
- 4. This scheme can be used for Alice and Bob to establish a secret key without meeting. This can then be used in other schemes such as the one-time pad.
- 5. Reality: This scheme is used in the real world for secret key exchange. The RSA algorithm is used for Public Key Cryptography (which is similar).