
Ciphers Where Alice and Bob
Need to Meet

Based on notes by William Gasarch

We will use three characters: Alice and Bob who want to communicate secretly,
and Eve who wants to see what they are talking about. Alice and Bob do not want
Eve to be able to decode their messages.

1. The Plaintext is the message you want to send. For example Discrete Math Plus
Plus is the nickname for this CMSC 389.

2. The Ciphertext is the message after it is encoded. For example EJTDS FUFNB
UIQM VTQM VTJTU IFOJD LOBNF GPSDN TD490. (See note on this
below.)

3. If Alice and Bob want to exhange messages then they need to both know SOME-
THING ahead of time. What they know is called a key. This will be clearer
with examples.

Note 0.1 In the above example of coding Discrete Math Plus Plus is the nickname
for this CMSC 389 I used several conventions:

1. I wrote the message in all capitols. This is a standard convention for Eduation-
the Plaintext is in normal font, the ciphertext is all capitols.

2. I wrote the message in blocks of five. This is also a standard convention. If
I wrote it like EJTDSFUF NBUI QMVT QMVT JT UIF OJDLOBNF GPS
DNTD 490. then it would be MUCH easier for Eve to decode. Using the
blocks-of-five does NOT make it much harder for Alice and Bob.

3. In the above I shifted the letters by 1. This is a standard cipher discussed
below. I also shifted the numbers by 1. This is not standard.

1 Shift Cipher

Alice and Bob have wanted to exchange secret messages for the last 4000 years. One
of the earliest techniques for this, called the Caesar Cipher, operates as follows.

First imagine all letters as numbers. A is 0, B is 1, C is 2, etc, Z is 25. Map every
letter to the letter that is three higher (modulo 26). So, the the last three letters shift
to the first three. So

A goes to D

1



B goes to E
...

V goes to Y
W goes to Z
X goes to A
Y goes to B
Z goes to C.

More generally, a shift cipher is a code where every letter shifts a constant amount.
Lets say that Alice shifts by s ∈ {0, 1, 2, . . . , 25}. We can write this as

f(x) = x + s mod 26.

If Alice uses f what does Bob use to decode? He will use

g(x) = x− s mod 26.

Note that f(g(x)) = x. Also note that for ANY choice of s there is a −s. We do
not actually use −s, we use 26− s which accomplishes the same thing.

Are shift ciphers good?

PROS

1. The scheme is easy to describe, easy to code, and easy to decode. So Alice and
Bob can operate very fast.

2. Alice and Bob only have to agree on the shift. Since the shift is in {1, . . . , 25},
they can easily communicate to each other which shift to use.

CONS

1. The scheme is easy so Eve may spot the pattern.

2. If Eve knows that it is a shift cipher then she can just try all 25 possible shifts.
(See later for a fuller explanation.)

3. Alice and Bob do have to meet privately once to agree on the shift. (Is this
avoidable?)

Breaking the Cipher:
As noted above Eve could just “try” all 26 possible shifts. But what does that

mean? She could, for each shift, decode and see which text “makes sense”. But this
would be time consuming by hand. Worse- it may be hard to automate. What does
it mean to a computer to “make sense?” Is there a better way?

YES! The frequencies of each letter in English is known. (E.g., e is the most
common letter). Let pi be the expected relative frequency of the ith letter in a text.
These values are known. Hence α =

∑26
i=1 p2

i is known and is 0.065.

2



Let T be a text. Assume that it was coded with a shift of s. Let qi be the relative
freq of the ith letter in T . Then qi+s is roughly pi. Hence Is =

∑26
i=1 piqi+s will be

around 0.065. Also, if s′ is NOT the shift then Is′ =
∑26

i=1 piqi+s′ will be around 0.038.
SO, rather than try to see what shift “looks right” or “makes sense” just compute

Is for s = 1, 2, . . . , 25 and whichever one yields something close to 0.065 is the shift.
It is likely there will only be one such.

2 Linear Cipher

We can use a more complicated function. For example

f(x) = (3x + 4) mod 26.

If Alice uses f to code, what does Bob use to decode? He needs to use g(x) =
Ax + B mod 26. We need to find A, B that work We need

f(g(x)) = x

f(Ax + B) = x

3(Ax + B) + 4 = x

3Ax + 3B + 4 = x

We’ll set 3B+4 = 0 and 3A = 1. AH- can we solve those equations? In both cases
we need a number whose mult inverse is 3 mod 26. For now we’ll try all possibilities
(there are faster ways).

3× 1 = 3
3× 2 = 6
3× 3 = 9
3× 4 = 12
3× 5 = 15
3× 6 = 18
3× 7 = 21
3× 8 = 24
3× 9 = 27 ≡ 1
AH- so 9 is the number we seek.

3B + 4 = 1

Mult both sides by 9 and reduce mod 27.

3



B + 4× 9 = 9

B + 36 = 9

B + 10 = 9

B = −1 = 25

And now for A.

3A = 1

A = 9

.
So Bob uses g(x) = 9x + 25.
Does EVERY linear cipher have an inverse? Lets try f(x) = 2x. We need an

inverse of 2 mod 26. There isn’t one— 2x is always even mod 26.
It turns out that so long as the coeff of x is relatively prime to 26 then an inverse

exists. So the coeff can be any of {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}. The constant
term can be anything.

Are these codes good?

PROS

1. The scheme is easy to describe, easy to code, and easy to decode (once you
know the trick). So Alice and Bob can operate very fast, though not as fast as
with the shift cipher.

2. Alice and Bob only have to agree on the multiplier and the shift. This amounts
to knowing one number from {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} and another
from {0, 1, . . . , 25}. We represent the numbers in base 2. Each number is 5 bits
long, so two numbers take 10 bits. This is small.

CONS

1. The scheme is easy so Eve may spot the pattern, though it’s not as easy as the
Shift Cipher.

2. If Eve knows that it is a linear cipher then she can just try all 12 × 26 = 312
possible linear ciphers. Notice that this is harder than for a shift cipher.

3. Alice and Bob do have to meet privately to agree on the parameters. (Is this
avoidable?)

4



3 Quadratic Cipher

One can look at quadratic ciphers, for example:

f(x) = (2x2 + 5x + 9) mod 26.

These are called quadratic ciphers. They have similar PROS and CONS to linear
ciphers. However there is one more serious CON: given a quadratic polynomial it
is hard to determine if it has an inverse on {0, . . . , 26}. Note that there are more
quadratics than linear function so a PRO is that its harder to crack than a linear
cipher.

4 Polynomial Cipher

One can look at any polynomial, for example:

f(x) = (2x8 + 5x2 + 9) mod 26.

(Frankly I do not know if this would work.)
The higher the degree the harder for Alice and Bob to tell if it has an inverse

AND the harder for Eve to try to decode it.

5 Any Permutation

Alice and Bob pick a random permutation of {A, . . . , Z}.
Is this a good code?

PROS

1. It seems as though Eve has to try 26! possibilities.

CONS

1. The key Alice and Bob use is a list of the letters of the alphabet in some order.
In base 2 this is 26× 5 = 130 bits (though it can be done in somewhat less).

2. Alice and Bob do have to meet in secret to estabish the key. (Is this avoidable?)

3. Eve has to go through ALL 26! possibilities to crack this code! hence this code
is UNBREAKABLE!!!!!! (Note- this is NOT TRUE as we will see soon. This
is typical of the entire history of crypto which can be summarized as:

CODE MAKER: I have an unbreakable code!

CODE BREAKER: I just broke it.

5



CODE MAKER: Whoops.

Throughout history codes thought unbreakable were broken because the way to
break them was unrelated to how they were derived.

6 Frequency Analysis

Given a text that came from a random permuation how can Eve crack it? NOT by
going through all 26! possiblities. That would take too long. But note that e is the
most common letter in the English Language. th is the most common two-letter pair.
People have compiled tables of such information and these can be used to crack a
coded text if its long enough.

Also, if Eve knows you are cracking (say) military codes she may use that to her
advantage— slightly different patterns may hold.

In old times (say 2000 years ago) it was still fine to use a random cipher since the
computation power to do a freq analysis wasn’t there yet. But now it is. Hence in
the real world today nobody uses any of the ciphers mentioned above.

All of the ciphers discussed so far are mono-sub ciphers, meaning that they map
the alphabet letter by letter. Any such cipher can be broken by a Freq Analysis.

7 Matrix Codes

Here is one way to defeat the freq analysis.
Let A be the following matrix.

A =

(
8 9
11 7

)

We can map pairs of numbers with this matrix as follows. The pair (x, y) will map
to the pair you get by applying the matrix and reducing modulo 26, which is

((8x + 9y) mod 26, (11x + 7y) mod 26).

From start to finish: take a text, convert the letters to numbers, (assume it has
an even number of letters), break the sequence of numbers into blocks of 2 numbers
each, and apply the matrix to each pair to get an encoded pair.

Notice that this can be extended to 3×3 matrices or more generally k×k matrices.
If a 2 by 2 matrix is used then a freq analysis based on pairs may still be possible.

Same for 3 by 3. I suspect that at 10 by 10 this code cannot be cracked with freq
analysis.

Think about the PROS and CONS.

6



8 Vigenere Cipher

Here is another way to defeat freq analysis is the Vigenere Cipher. Here is an example:

• Every letter that is in a place ≡ 0 mod 5 is coded by a shift-4.

• Every letter that is in a place ≡ 1 mod 5 is coded by a shift-15.

• Every letter that is in a place ≡ 2 mod 5 is coded by a shift-7.

• Every letter that is in a place ≡ 3 mod 5 is coded by a shift-13.

• Every letter that is in a place ≡ 3 mod 5 is coded by a shift-1.

Alice could communicate the key to Bob as the sequence (4, 15, 7, 13, 1). Or she
could just say DOGMA since D is the fourth letter of the alphabet, O is the 15th,
etc. We call DOGMA the Key, and 5 the keylength. They could be any word (or
sequence of numbers in {0, . . . , 25}) and any length.

How to crack it? We give three methods. Both require long texts. Both involve
finding the key length and then doing a freq analysis on the appropriate subtexts
(e.g., in the above example you would do a freq analysis on every 5th letter).
Index Test: The Index of Coincidence of a text is the prob that two randomly
chosen letters are the same. It is known that for an English text this is roughly 0.68,
and for a random text this is roughly 0.38. Both of these facts are still true if the
text is encoded by a mono-substituition cipher. Both of these facts are still true if
you take all of the letters in the place that is ≡ L′ mod L for any L, L′.

Given a text of length n, let ni be the number of times the ith letter occurs. The
index of coincidence is

26∑
i=1

ni(ni − 1)

n(n− 1)
.

Given a text that you think was coded by a Vig cipher you can GUESS that the
key length is 2,3,4,. . . and for each guess form the text that is every 2nd, 3rd, . . .
letter and see if the IC is close to 0.68 or .038
Kasiski Examination: We first find the key length. Imagine that in the text you
see ABDUQ several times. It is likely that the DISTANCE between them is the key
length of a multiple of it. So find the differences between the repeated text and then
find a common factor for all of them. This gives you a SMALL set of key lengths to
look at. Then use the Index Test on those candidates.

9 Vigenere Plus Cipher

In the Vig cipher we used a SHIFT on every Lth letter. We could instead use a
Linear, Quadratic, Polynomial, Matrix on every Lth letter.

7



To my knowledge no such code was ever used. This is just an accident of history.
Let Y be a year (I do not know what year it is). Before year Y, using a Vig Plus
Cipher would have been two cumbersome for Alice and Bob. After year Y, there were
better techniques.

10 An Uncrackable Code: the One-Time Pad

Definition 10.1 If a and b are bits (0 or 1) then ⊕ (also written XOR and called
“exclusive or”) is defined as follows:

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

The following facts are easy to verify.

Fact 10.2 Let a, b, c be bits.

1. (a⊕ b)⊕ c = a⊕ (b⊕ c).

2. For all bits a, a⊕ a = 0.

3. a⊕ b⊕ b = a⊕ (b⊕ b) = a⊕ 0 = a.

We now describe the one-time pad.

1. Alice and Bob have to meet (or communicate over a secure channel that Eve
cannot listen to) and agree on a randomly generated sequence of bits – a VERY
long sequence. Say it’s

r1r2 · · · rN .

This is called the key. They then part.

2. If (later) Alice wants to send

a1a2a3 · · · am

she sends
(r1 ⊕ a1)(r2 ⊕ a2) · · · (rm ⊕ am).

When Bob gets this string, which he sees as

s1 · · · sm

8



he can decode it by taking

(r1 ⊕ s1)(r2 ⊕ s2) · · · (rm ⊕ sm) = (r1 ⊕ (r1 ⊕ a1))(r2 ⊕ (r2 ⊕ a2)) · · · (rm ⊕ (rm ⊕ am))
= ((r1 ⊕ r1)⊕ a1)((r2 ⊕ r2)⊕ a2)) · · · ((rm ⊕ rm)⊕ am))
= a1a2 · · · am

3. If either Alice or Bob wants to send another message they will start with rm+1.

PROS: This is impossible to crack! Since the original key was random, if Eve sees
the message

s1s2 · · · sm

it will look random to her.

CONS: N is LARGE! They have to meet and exchange A LOT of information. In
fact, if they plan to later communicate N bits they need to have a key of length N .

PROBLEM: Can Alice and Bob use a shorter key?

PROBLEM: Can Alice and Bob agree on a secret key (e.g., r1r2 · · · rN) without having
to meet?

9


