Can Matrix Codes be Broken with a Cipher-Text Only Attack?
by

William Gasarch and Jonathan Katz

1 Matrix Codes

Alice wants to sent a message to Bob such that if Eve intercepts it, she cannot decode it. The
alphabet is of size s and the message is viewed as a sequence of numbers in the set {0,...,s— 1}.
One way to encrypt is to take a n X n matrix M of entries from {0, . . ., s — 1} with determinant
relatively prime to s (so it has an inverse mod s). Then encrypt the first n characters x with Mz,
the next n characters y with My, etc.
Eve can clearly find M with a known-plaintext attack. Is there a ciphertext-only attack that

works? Throughout this paper we assume the following.

1. Eve knows the alphabet has size s, the dimension of the matrix n, and plaintext frequencies

for all unigrams, bigrams, . . ., whatever -grams she needs.

2. Given a proposed matrix M Eve can determine if it is the correct matrix or not, e.g., by

checking whether M ! applied to the entire ciphertext yields valid English text.

3. Eve has access to a very long ciphertext that we denote ¢y, co, ..., where each c; is an n-

gram.

We will present several attacks and, for each one, say what n has to be to make it infeasible.
We assume that any attack that requires more than 2'?® operations is infeasible. Since the notion
of operation 1s informal this should be considered as a guideline rather than a strict rule. As a
starting point, note that a brute-force attack that tries all s* matrices takes roughly s"* steps and,

for s = 26, is only feasible when n < 6.

2 An Attack Based on n2-Grams

Let NU M (n) be the set of n-grams that occur with “high” probability. (The probability could be

tailored, and the set can be generated by analyzing an existing corpus.) Note that |[NUM (n)| < s™.
Theorem 2.1 There is an attack that takes O(n*|NU M (n?)) steps.

Proof: Let N = |[NUM(n?)

,and NUM (n?) = {t,...,tx}.. Letdy,...,d, be the first n’
characters in the ciphertext, broken into n-grams.

Foreachl1 <:< N

1. Lett; = wuy - - - u,, where each w is an n-gram.

2. Solve for the entries of the matrix by solving the simultaneous equations Mu; = d;.
3. Check if the resulting matrix works.

Foreach 1 <4 < N this takes O(n?) steps. Hence the total time is O(n?N) = O(n?|NU M (n?)]).
The running time can likely be improved by considering the elements of NU M (n?) in decreas-

ing order of probability. |

3 A Row-by-Row Attack

Theorem 3.1 There is an attack that takes roughly n - s" steps.

Proof: The idea is to determine M ! row-by-row, using exhaustive search. This takes time s"
per row, so time n - s overall.

We describe the approach for determining the first row of M ~!. For each possible value r
of this row, compute 7 - ¢y, 1 - co, 7 - c3, If the guess r is correct then this yields the initial
letter in each n-gram of the plaintext. Those initial letters are expected to follow (known) letter

frequencies, and this fact can be used to identify r.

It is interesting to note that r is not unique: in particular, each row of M~ is expected to yield
the correct letter frequencies. This may actually be a good thing. We can hope that the best n
matches yield the n rows of M ~!. Then identifying these n matches would take fotal time s™.
To determine the ordering among those rows, we can use bigram analysis on a smaller number of

ciphertext blocks. 1

For s = 26 the above attack is feasible for n < 30. However, we note several ways the attack
can (potentially) be improved.

First of all, we can apply the above attack modulo factors of s. Let p be any factor of s (it
need not be a prime factor). Then we can learn M ~! mod p by reducing the ciphertext modulo p
and using known letter frequencies modulo p. This takes time p™. There is a tradeoff here: for
small p the attack is faster but we learn less information about M ~*; more problematic is that letter
frequencies may become more smooth as p decreases (though this depends on the initial letter
frequencies). For English n = 26 = 13 - 2 and, based on known letter frequencies for English text,
this approach seems to work for both p = 2 and p = 13. This would give a total complexity for the
attack of n - (2" + 13"), which is feasible for n < 30 or so.

Another idea (which may be combined with the previous one) is to use a lattice-based attack
to find a given row 7. Let C denote the matrix in which the ith row is ¢;. Then C' - rT should be
a vector in which each character occurs according to the known letter frequencies. Unfortunately
we don’t know the permuted order in which the characters will occur. Nevertheless, we expect
C - rT — ¢ to be “short” if ¢ is an appropriately chosen constant vector, and this gives hope that

lattice-based algorithms can be applied. It remains to be seen how this plays out in practice.

