Problem 3
Find ALL pairs of numbers $a, b \in \{0, \ldots, 25\}$ such that the coding and decoding tables for x goes to $ax + b \pmod{26}$ are the same.

Solution:
We start with affine cipher: $y \equiv ax + b \pmod{26}$. NOTE that a is relatively prime with 26.

\[
y \equiv ax + b \pmod{26}
\]
\[
\iff y - b \equiv ax \pmod{26}
\]
\[
\iff a^{-1}(y - b) \equiv a^{-1}ax \pmod{26} \quad (a^{-1} \text{ is the multiplicative inverse of } a)
\]
\[
\iff a^{-1}y - a^{-1}b \equiv x \pmod{26} \quad (a^{-1} \text{ is mul. inv. of } a \Rightarrow a^{-1}a \equiv 1 \pmod{26})
\]

Now, since we want the encoding the decoding tables are identical, then we have

\[
a^{-1}x + a^{-1}b \equiv y \pmod{26}
\]

Since

\[
y \equiv ax + b \pmod{26}
\]

We get

\[
a^{-1}x + a^{-1}b \equiv ax + b \pmod{26} \quad (1)
\]

Since (1) is true for all $a, b \in \{0, \ldots, 25\}$, we get

\[
\begin{cases}
a \equiv a^{-1} \pmod{26} \\
b \equiv -a^{-1}b \pmod{26}
\end{cases}
\]

(Continued on next page)
Let's look at the equation

\[a \equiv a^{-1} \pmod{26} \]

\[a^2 \equiv 1 \pmod{26} \]

\[a^2 - 1 \equiv 0 \pmod{26} \]

\[(a - 1)(a + 1) \equiv 0 \pmod{26} \]

One is tempted to say AHA- \(a = -1 \equiv 25 \) or \(a = 1 \). DONE. While this is true the reasoning is not quite right. Over the reals if \(\alpha \beta = 0 \) then you MUST have \(\alpha = 0 \) or \(\beta = 0 \). but over mod 26 you can have something like \(6 \times 13 \equiv 0 \).

So there might be solutions where either \(a - 1 \) is even and \(a + 1 = 13 \) or \(a + 1 \) is even and \(a - 1 = 13 \). We leave it to the reader to show that neither is possible.

So \(a = 1 \) and \(a = 25 \) are the ONLY possibilities for \(a \).

Alternatively you can go through all \(a \) relatively prime to 26 and see which ones give \(a^2 \equiv 1 \).

- When \(a = 1 \), then we have

\[b \equiv -b \pmod{26} \]

\[\iff 2b \equiv 0 \pmod{26} \]

There are only two possible values for \(b \) that satisfies this equation: \(b = 0 \) and \(b = 13 \). NOTE that this is the result that we achieved from previous homework. The reason is \(a = 1 \) means it is really a shift cipher.

- When \(a = 25 \), then

\[b \equiv -25b \pmod{26} \]

\[\iff 26b \equiv 0 \pmod{26} \]

Since this statement is always true, then for \(a = 25 \), \(b \) could be anything in \(\{0, \ldots, 25\} \).

We conclude that all possible pairs for \((a, b) \) are \((1, 0), (1, 13), (25, 1), \ldots, (25, 25) \).

If you missed a lot of pairs and didn’t show work at all, you will lose credits. If you just get \((1, 0) \) and \((1, 13) \) and did explain how you got those answers, you’ve earned half credit. If you wrote a program to check all possible solutions and ended up with the same result, that is still okay.