
Lecture Notes on SECRET SHARING
Exposition by Bill Gasarch

1 Introduction

The field of Secret Sharing was invented by Adi Shamir [?] and George Blakely [?] independently.
Zelda has a secret s which is a string of bits. She has associates Alice and Bob. She wants to give

SOME info to Alice and SOME info to Bob (called a share of the secret) such that

• Alice alone has NO IDEA what the secret is (info-theoretic security).

• Bob alone has NO IDEA what the secret is (info-theoretic security).

• If Alice and Bob share their information then they can both learn the secret.

This problem can be generalized to Zelda having three friends and any TWO cannot uncover the secret,
but all three CAN.

This problem can be generalized further: Zelda has many friends and she only wants certain subsets of
them (and supersets of those) to learn the secret, but no proper subsets of those can learn the secret.

We will show how all of these things can be done.

2 Alice and Bob need to Cooperate to Learn the Secret

Def 2.1 If b and c are bits (elements of {0, 1} then ⊕ (pronounced “x-or”) is defined as follows

b c b⊕ c

0 0 0
0 1 1
1 0 1
1 1 0

Note that b⊕ c⊕ c = b.

1. Zelda’s secret is a string of bits s1s2 · · · sL.

2. Zelda generates a RANDOM SEQUENCE OF L bits: a1a2 · · · aL.

3. Zelda computes

b1 = s1 ⊕ a1
b2 = s2 ⊕ a2

...
...

bL = sL ⊕ aL

4. Zelda gives Alice a1a2 · · · aL.

5. Zelda gives Bob b1b2 · · · bL.

Alice alone has a1 · · · aL which is a RANDOM sequence of bits. NO information.
Bob alone has b1 · · · bL which is a RANDOM sequence of bits. NO information.
But if they get together then they can XOR the strings bitwise to obtain

s1 = a1 ⊕ b1
s2 = a2 ⊕ b2

...
...

sL = aL ⊕ bL

1

3 Certain Subsets of Alice, Bob, Carol, Donna Need to Cooperate to
Learn the Secret

Notation 3.1 IMPORTANT NOTATION: If x, y are strings of bits of the same length then x⊕ y is the
bit-wise ⊕ of x and y.

Zelda has a secret. She wants it to be the case that:

• Alice, Bob, Carol together can crack it, but no subset.

• Carol, Donna together can crack it, but no subset.

We essentially do the protocol in the last section twice.

1. Zelda’s secret is a string of bits s.

2. Zelda generates a RANDOM SEQUENCE OF BITS a, with |a| = |s|.

3. Zelda generates a RANDOM SEQUENCE OF BITS b, with |b| = |s|.

4. Zelda computes c = s⊕ a⊕ b.

5. Zelda gives Alice (a, ABC).

6. Zelda gives Bob (b, ABC).

7. Zelda gives Carol (c, ABC).

The ABC is telling them to use those strings JUST for Alice-Bob-Carol. If Alice, Bob, Carol get
together note that

a⊕ b⊕ c = a⊕ b⊕ (a⊕ b⊕ s) = s

OKAY, that takes care of Alice, Bob, Carol. We now want to take care of Carol and Donna. We will
call the bits we give Carol c′ to distinguish them for the c.

1. Zelda’s secret is a string of bits s.

2. Zelda generates a RANDOM SEQUENCE OF of bits: c′ with |c′| = |c|.

3. Zelda computes d = s⊕ c′.

4. Zelda gives Carol (c′,CD).

5. Zelda gives Donna (d,CD).

The CD is telling them to use those strings JUST for Carol-Donna. If Carol and Donna get together
note that

c′ ⊕ d = c′ ⊕ (s⊕ c′) = s.

4 Specified Subsets of A1, . . . , Am have to Cooperate to Learn the Secret

Assume the secret is a string s ∈ {0, 1}L.
What if the people are A1, . . . , Am and the subsets of people that you want to allow to have S1, . . . , SL.

Assume the secret is of length L.

1. Assume Si = {A1, . . . , Az} after renumbering.

2. Zelda generates random strings r1, . . . , rz−1 ∈ {0, 1}L.

2

3. Zelda gives each of A1, . . . , Az−1 a random string of L bits.

4. Zelda gives Az that ⊕ of ALL of the strings given to A1, . . . , Az−1 together with the number i (so
that they know the string they got is to be used when the people in Si are to find the secret). and
then ⊕ that with the secret.

.
GOOD NEWS: This always works!
BAD NEWS: Zelda is giving out LOTS of strings. We do an example.

Example: There are 8 people and any subset of 4 should be able to crack the secret. The secret is of
length L.

The number of subsets of 8!
4!4! = 8×7×6×5

4×3×2 = 7× 2× 5 = 90.
So there are 90 subsets. Each has 4 people. So Zelda is giving out 90× 4 = 360 strings of length L.
We want to do better!

5 Threshold Secret Sharing

Section ?? had good news and bad news. The good news is that for ANY specified subsets Zelda can
share her secret. The bad news is that it might involve many strings. We want to use far less strings. We
formalize this

Def 5.1 A secret shareing scheme is ideal if each Ai gets a share of length the same as the length of the
secret.

There are some subsets of {A1, . . . , Am} such that ideal secret sharing is not possible. Hence we look
at a particular type of subsets where it is possible. Let 2 ≤ t ≤ m. We want a secret sharing scheme such
that the following happens:

• ANY t of A1, . . . , Am can find out the secret.

• NO subset of size t− 1 of A1, . . . , Am can find out the secret.

5.1 Digression into Abstract Algebra

Recall the domain {0, 1, . . . , p − 1} where the mathematics is mod p. Here are some properties that this
domain has:

1. There is an element 0 such that for all x, x + 0 = x.

2. There is an element 1 such that for all x, x× 1 = x.

3. For all x, y, (1) x + y = y + x, and (2) xy = yx.

4. For all x, y, z (1) x + (y + z) = (x + y) + x, and (2) (xy)z = x(yz).

5. For all x there exists y such that x + y = 0. (So, for example, −7 makes sense.)

6. IF p is prime then for all x there exists y such that xy = 1 (So, for example, 1
7 makes sense.)

We use these properties to define a field.

Def 5.2 A Field is a set of elements F together with two operations + and × that satisfy the properties
above.

Examples:

1. Q, R, C are fields you have seen in high school. Note that N and Z are NOT fields since you cannot
divide.

3

2. Let GF (p) be the set {0, 1, . . . , p− 1} using mod p arithmetic is a field. If p is a prime then GF (p) is
a field. The only hard step to proving that is that every number has a mult inverse, which you have
already proven. If p is NOT a prime then GF (p) is NOT a field. (Nobody ever uses the notation
GF (p) in this case since GF stands for Galois Field.)

Are there any other finite fields? YES. We need the following two theorems from abstract algebra.

Theorem 5.3 If q is a power of a prime then there exists a unique field on q elements. If q is a NOT
power of a prime then there DOES NOT exists a field on q elements.

Notation 5.4 If q is a finite field then GF (q) is the finite field on q elements.

Theorem 5.5 If F is any field and f(x) is a poly of degree t− 1 over that field then (1) given t values of
f (e.g., f(1), . . . , f(t)) you can determine the polynomial, (2) given t−2 values of f you cannot determine
ANYTHING about the polynomial.

Proof: We give two proofs of (1). We do not proof (2).
Proof 1

Let 1 ≤ j ≤ t. Consider the function

hj(x) =
x− x1
xj − x1

x− x2
xj − x2

· · · x− xj−1
xj − xj−1

x− xj+1

xj − xj+1

x− xj+2

xj − xj+2
· · · x− xt

xj − xt
.

Note that

• For all x ∈ {x1, . . . , xt} − {xj}, hj(x) = 0.

• hj(xj) = 1

.
We can use these polynomials to form the polynomial

f(x) =
t∑

j=1

yjhj(x).

Clearly, for all 1 ≤ i ≤ t, f(xj) = yj . Also clearly f is of degree t− 1.
Proof 2

This method only works if the the the points are (0, y0), . . . , (t− 1, yt−1). This will NOT be useful for
us since, as we will see later, we can’t possibly give anyone f(0) as that IS the secret. Even so, this method
of interpolation will be useful for a later protocol.

Assume the polynomial is of the form

f(x) = c0

(
x

0

)
+ c1

(
x

1

)
+ · · ·+ ct−1

(
x

t− 1

)
.

Note that if y ≥ x + 1 then
(
x
y

)
= 0.

First look at f(0) = y0. This means

y0 = c0

(
0

0

)
= c0.

So we know c0.
Now look at f(1) = y1. This means

y1 = c0

(
1

0

)
+ c1

(
1

1

)
= c0 + c1.

4

Hence c1 = y1 − c0.
Now look at f(2) = y2. This means

y2 = c0

(
2

0

)
+ c1

(
2

1

)
+ c2

(
2

2

)
= c0 + c1 + c2.

Hence c2 = y2 − (c0 + c1).
More generally we have:

(∀0 ≤ i ≤ t− 1)[ci = yi −
i−1∑
j=0

ci.

We will prove this later.

5.2 Back to Threshold Secret Sharing

1. Zelda’s secret is a string of bits s. Let F = GF (2|s|). All arithmetic will be in F . Note that s is an
element of F . (NOTE- could also us a prime p slightly bigger than s and use GF (p). This will lead
to the shares of the secret being one bit longer, but the arithmetic, mod p, is more familiar to you.)

2. Zelda picks random r1, . . . , rt−1 ∈ F . Let f be the function

f(x) = rt−1x
t−1 + · · ·+ r1x + s.

3. For 1 ≤ i ≤ m Zelda gives Ai the string f(i). There are elements of F and hence |s| long. Note that
these are m points on the curve f(x),

If any t people get together then they can deterimine f(x) and hence s. If any t−1 people get together
they cannot determine ANYTHING about s. Note that all of the shares are of size |s|.

The key to the technique in this chapter is that t points determine a degree t− 1 polynomial. This is
Shamir’s [?] scheme. Blakely [?] used that t points determine a t − 1-space (e.g., three points determine
a plane). We will present Shamir’s protocol but not Blakely’s. There is no good reason for this— its just
that I like using polynomials rather than high-dimensional spaces.

6 Some Secret Sharing Schemes for Non-Threshold Structures

In Section ?? we saw how Zelda could share here secret with ANY set of subsets, though the schemes were
far from ideal. In Section ?? we saw that if the goal is threshold then Zelda and company can do ideal
secret sharing. Are there other sets of subsets where they can Zelda and friends can do ideal secret sharing.

6.1 Need A1, A2, . . . , At′ and at least t others

Like the title says.

1. s is the secret.

2. Zelda picks random s1, . . . , st′ of the same length as s. and then finds s′ such that s1⊕· · ·⊕st′⊕s′ = s.

3. For 1 ≤ i ≤ t′ Zelda gives Ai the string si.

4. Zelda picks random r1, . . . , rt−1 ∈ F . Let f be

f(x) = rt−1x
t−1 + · · ·+ r1x + s′.

For t′ + 1 ≤ i ≤ m Zelda gives Ai the number f(i). (This is just the usual poly-threshold scheme for
At′+1, . . . , Am with threshold t.

5

If A1, . . . , At′ and t of the rest get together then they have s1, . . . , st′ from A1, . . . , At′ , and the other t
can recover s′. Hence they can recover s = s1 ⊕ · · · st′ ⊕ s′ = s.

If some group gets together that does not have one of the Ai for 1 ≤ i ≤ t′ then they might get all the
pieces EXCEPT s′i, so they have NOTHING! If some group gets together that had A1, . . . , At′ and LESS
THAN t of the rest the don’t have s′ so THEY HAVE NOTHING!

7 Can We Use Shorter Shares?

If the secret is of length n and any set of t people can learn it, and everyone has the same length share,
then everyone MUST have a share of length n/t. In the schemes above everyone had a share of length n.
Can we do better? Can we do n/t? Can we come close?

7.1 Secret Sharing with shares of length n/t

Theorem 7.1 There is a secret sharing scheme where Zelda has a secret of length n, any t people can
learn the secret, no set of t − 1 can learn anything about the secret, and everyone gets a share of length
n/t.

Proof: Zelda’s secret is s = s0s1s2 · · · st−1 where each si is of length n/t. Zelda finds a finite field F
such that |F | = 2n/t. Zelda generates random k of length n. k = k0k1 · · · kt−1. Zelda uses the polynomails

f(x) = st−1x
t−1 + · · · s1x + s0

For 1 ≤ i ≤ m Zelda gives Ai f(i).
KEY: Everyone gets a string of length n/t.
If t of Zelda’s associates get together then they can find f and hence they know k and can find s.
Each player gets a number in GF (2n/t) hence of length n/t.
Why is this scheme secure?

6

YOU”VE BEEN PUNCKED! Lets look at what just A1 knows. He knows

f(1) = st−1 + · · ·+ s0.

That’s already some information! In particular, A1 can ELIMINATE some possibilities for the secret.
A1, . . . , At−1 can eliminate even more.

7.2 Secret Sharing with shares of length 2n/t Using 1-time Pad

The problem with the proof of Theorem ?? is that the actual secret is the coefficient. We fix this by having
the coefficients be the secret coded with a 1-time pad. We do not get n/t but we get 2n/t.

Theorem 7.2 There is a secret sharing scheme where Zelda has a secret of length n, any t people can
learn the secret, no set of t − 1 can learn anything about the secret, and everyone gets a share of length
2n/t.

Proof: Zelda’s secret is s = s0s1s2 · · · st−1 where each si is of length n/t. Zelda finds a finite field F
such that |F | = 2n/t. Zelda generates random k of length n. k = k0k1 · · · kt−1. Zelda finds two polynomails

f(x) = (st−1 ⊕ kt−1)x
t + · · · (s1 ⊕ k1)x + (s0 ⊕ k0)

g(x) = kt−1x
t + · · · k1x + k0

For 1 ≤ i ≤ m Zelda gives Ai (f(i), g(i)).
KEY: Everyone gets a string of length 2n/t.
If t of Zelda’s associates get together then they can find both f and g hence they know k and can find

s.
Why is this scheme secure?

7

YOU”VE BEEN PUNKED! AGAIN! t − 1 people CAN find out something about the secret. If
A1, . . . , At−1 get together they can cycle through all 22n/t possible shares for At and produce 2n/t pos-
sibilities for the secret. Hence they can eliminate some possibliities. Not info-theoretic secure.

Lets recap what we have so far and what to make of it.
Zelda has a secret s, with |s| = n. There are m people. Zelda wants that if any t get together they can

recover the secret, but any t− 1 cannot. The scheme in Section ?? does this! We point out two aspects of
it:

• Any set of t− 1 gets NO INFORMATION WHATSOEVER. They cannot even eliminate any possi-
bility for the secret. We call the scheme information-theoretically secure.

• Every player gets from Zelda a string of length n.

Is there an information-theoretic secure scheme where some player get strings of length n− 1? NO:

Theorem 7.3 Assume there are m people A1, . . . , Am and a number 2 ≤ t ≤ m. Assume there is an
attempt at a threshold-t secret sharing scheme. If one of the players (we assume At gets a string of length
n− 1 then the scheme is NOT information-theoretically secure.

Proof: Assume there is a scheme scheme where At gets a share of length n − 1. If A1, . . . , At−1 get
together they can try ALL of the 2n−1 possible shares that At could have gotten and produce a set of 2n−1

possible secrets. Hence the t − 1 players can eliminate HALF of the possibilites for secrets. This is NOT
information-theoretically secure.

7.3 Ramp Secret Sharing with Shorter Shares

By Theorem ?? we cannot have a scheme where some player gets a share of length less than n. So we
lower our goals so that if t− 1 people get together they can learn something, t− 2 can learn less, and then
at some point they can’t learn at all.

Theorem 7.4 Let 1 ≤ t′ < t. There is a secret sharing scheme such that the following hold.

1. If any t people get together they can learn the secret.

2. If ≤ t′ people get together they cannot learn the secret.

3. If t′ ≤ L ≤ t people get together then they can narrow the secret down to a space of size (2n/g)t−L =
2(n/t−t

′)(t−L).

4. Every player gets a share of size n/(t− t′).

Proof: Let g be a parameter to be determined later. Zelda’s secret is s = s1s2s3 · · · sg where each si is
of length n/g. Zelda finds a finite field F such that |F | = 2n/g. Zelda finds a polynomial p of degree t− 1
such that for 0 ≤ i ≤ g − 1, f(i) = si. For 1 ≤ i ≤ m Zelda gives Ai f(g + i).

KEY: Everyone gets a string of length n/g.
If t of Zelda’s associates get together then they can interpolate and find the polynomial f . We need

to find g. If t′ people get together they can cycle through the shares that the t − t′ people would get to
reduce the number of possible

(2n/g)t−t
′ ≥ 2n

2n(t−t
′)/g ≥ 2n

n(t− t′)/g ≥ n

8

(t− t′)/g ≥ 1

t− t′ ≥ g

g ≤ t− t′.

We can take g = t− t′.
NOW- if t′ ≤ L ≤ t people get together then they can cycle through the shares that t−L people would

use to reduce the number of possibilities to (2n/g)t−L = 2(n/t−t
′)(t−L).

Can they learn more than this? No, but I won’t prove that. This time YOU HAVE NOT BEEN
PUNKED!

This is called Ramp Secret Sharing since we picture a ramp betwee t′ and t. As the number of people
goes from t′ to t they can learn more and more.

7.4 Secret Sharing with Shorter Shares

By Theorem ?? we CANNOT do better if we want info-theoretic security. One way around this problem is
Ramp Secret Sharing, as shown in Theorem ??. Another way is to weaken the security from info-theoretic
to computational. Our exposition is essentially that of Hugo Krawczyk [?] with one difference we will
discuss when we talk about the security.

We give three approaches. The first one does not work but gives us ideas for the next one. The second
one gives a reduction in size.

Recall that there are m people and the secret s. We want that if t of them get together they can find
it.

7.5 Shorter Shares: Split up the Secret

Instead of using the s as the constant for a degree t − 1 polynomial we will split s into t pieces and use
each piece as a coefficient.

1. Let s = s0s1 · · · st−1 where all of the si’s are of roughly the same length. We assume |si| = |s|/t.

2. Let F = GF (2|s|/t).

3. Zelda forms the polynomial (over F)

f(x) = st−1x
t−1 + st−2x

t−2 + · · ·+ s1x + s0.

4. All arithmetic is mod p. Zelda gives Ai the number f(i).

Each player gets a number in {0, . . . , p−1}, hence of length at most lg p ≤ lg 2s1/t = lg(s)/t+1 = |s|
t +1.

If t of them get together they can recover the polynomial and hence the secret.
If t−1 of them get together then what do they know? Well, lets look at what just A1 knows. He knows

f(1) = st−1 + · · ·+ s0 (mod p).

That’s already some information! If two people get together they can do some algebra and learn some
more. They won’t learn the secret but they will learn things about the secret. Hence this scheme is not
information-theoretically secure. Is it computational secure? I doubt it, but I doubt its known since I
invented this scheme for this course and its not well studied.

In the next section we give a scheme that is computationally secure.

9

7.6 Shorter Shares: Split up the Shares and use RSA

Def 7.5 If Alice and Bob use RSA with primes p, q and encryption key e, decryption key d then RSA(p, q, e, d,m)
is what Bob sends Alice if he wants to send m. If p, q, e, d are understood (this will always be the case) then
we may just use RSA(m). (We use RSA but any public key crypto system would work in this section.)

As in the last Section the secret is split up. However, before forming the polynomial Zelda encodes the
si with RSA. She will also (1) broadcast to everyone n, e, and (2) give everyone a second polynomial which
codes p, d.

Recall that Zelda wants to share a secret s with such that if t people get together they can find it out,
but if t− 1 people get together they cannot. The number of people will not matter.

1. Zelda picks a p, q, e, d that (1) satisfy the conditions of RSA, and (2) p and q are roughly 2|s|/t, so
|p| = |q| = |s|/t+O(1) and n = pq is such that |n| = |s|/t+O(1). Henceforth we ignore O(1) terms,
so we take |p| = |q| = |n| = |s|/t.

2. Zelda computes u = RSA(s). We assume |u| = |s|.

3. Zelda takes u = u0 · · ·ut−1 where all of the ui’s are of roughly the same length. We take |ui| = |s|/t.

4. Let F = GF (2|s|/t). Note that all ui are in F .

5. Zelda forms the polynomial (over F)

f(x) = ut−1x
t−1 + ut−2x

t−2 + · · ·+ u1x + u0.

6. Let k = (p, d) be a way to code p and d into one number. We can arrange things such that
|(p, d)| = 2|s|/t.
We use a field F ′ on 22|s|/t elements. Zelda will ALSO secret-share the key k. This we do in the
standard way; however we still describe it for completeness and so we can our analysis.

Zelda picks random numbers rt−1, . . . , r1 ∈ F (so |ri| ≤ |s|/t). Zelda forms the polynomial (over F ′)

g(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x + k.

7. Zelda gives Ai the numbers f(i) and g(i). Zelda also gives everyone (n, e) but we won’t count that
as a share since everyone gets it.

How many bits does Zelda give each Ai?

f(i) is of length |s|/t.
g(i) is of length 2|s|/t.
Hence the total length is 3|s|/t.

If t of them get together they can recover the polynomial f(x) and the polynomial g(x) so they will
have the u0, . . . , ut−1 and k = (p, d). They can thus find u = u0 · · ·ut−1 and the factorization of n, hence
they can compute s = RSA−1(u).

If t − 1 of them get together then what do they know? For ten years this scheme was thought to
be secure. Then it was broken by Bellare and Rogaway [?]. Actually, thats not quite fair. The original
protocol did not specify RSA. It just said to use some public key encryption. Bellare and Rogaway
found that it matters which one is used. RSA does not have the properties needed. But other public
key encryption schemes do. So it is more fair to say that Bellare and Rogaway clarified and corrected
Krawczyk’s construction. But that is also not quite fair. Bellare and Rogaway did more than that- they
put Secret Sharing on a more rigorour footing.

Can we do better than 2|s|/t?
We can! (and this time I am not punking you).
We can’t beat |s|/t. Lets view the last 2|s|/t result as

10

|s|/t(share of encoded secret) + |s|/t(share of Key).

Can we decrease how much we need for the share of the Key. We can! But first we will express the
shares for the encoded secret differently.

1. Zelda picks a p, q, e, d that (1) satisfy the conditions of RSA, and (2) p and q are roughly 2|s|/2t, so
|p| = |q| = |s|/2t + O(1) and n = pq is such that |n| = |s|/2t + O(1). Henceforth we ignore O(1)
terms, so we take |p| = |q| = |n| = |s|/2t.

2. Zelda computes u = RSA(s). We assume |u| = |s|.

3. (NEW STEP) Zelda takes u = u1,0 · · ·u1,t−1u2,0 · · ·u2,t−1. where all of the ui’s are of roughly the
same length. We take |ui| = |s|/2t. So the ui’s are all shorter!

4. Let F = GF (2|s|/2t). Note that all ui are in F .

5. Zelda forms TWO polynomials (over F)

f1(x) = u1,t−1x
t−1 + u1,t−2x

t−2 + · · ·+ u1,1x + u1,0.

f2(x) = u2,t−1x
t−1 + u2,t−2x

t−2 + · · ·+ u2,1x + u2,0.

6. Let k = (p, d) be a way to code p and d into one number. We can arrange things such that
|(p, d)| = |s|/t. Zelda will ALSO secret-share the key k. This we do in the standard way; however
we still describe it for completeness and so we can our analysis. We use a field F ′ on 22|s|/2t = 2|s|/t|

elements.

Zelda picks random numbers rt−1, . . . , r1 ∈ F (so |ri| ≤ |s|/2t). Zelda forms the polynomial (over F ′)

g(x) = rt−1x
t−1 + rt−2x

t−2 + · · ·+ r1x + k.

7. Zelda gives Ai the numbers f1(i), f2(i) and g(i). Zelda also gives everyone (n, e) but we won’t count
that as a share since everyone gets it.

How many bits does Zelda give each Ai?

f1(i) is of length |s|/2t.

f2(i) is of length |s|/2t.

g(i) is of length |s|/t.
Hence the total length is

2
|s|
2t

+
s

t
=
|s|
t

+
|s|
2t

I kind of like this form since it is clearly THE SECRET plus THE KEY YOU NEED TO GET THE
SECRET. Even so, we have to add them up to get

3|s|
2t

The number of bits needed to share the ui’s did not change- view it as 2× |s|/2t instead of |s|/t, but
its still the same. The number of bits needed to share the key has now gone down.

One could iterate this method further.

11

8 Verifiable Secret Sharing

Verifiable secret sharing was introduced by Chor, Goldwasser, Micali, Awerbuch [?]. We give a scheme due
to Feldman [?].

Zelda and A1, . . . , A9 are the players. Zelda wants any 5 of them to be able to crack the secret but no
4 of them. So they will use the poly method.

1. The secret is s. p is chosen such that s ≤ p ≤ 2s. Zelda picks random r4, r3, r2, r1d and form the
polynomial f(x) = r4x

4 + r3x
3 + r2x

2 + r1x + s.

2. For 1 ≤ i ≤ 9 Zelda gives Ai the element f(i).

A2, A4, A7, A8, A9 get together. BUT A7 DOES NOT WANT the group to find the secret out! Hence
we need to VERIFY that everyone is telling the truth. This is called VERIFIABLE secret sharing.

We give a scheme that is computationally secure, but not information-theoretic secure. Aside from
Zelda giving the players the above she also does the following.

1. Zelda finds a generator g for the prime p.

2. Zelda gives to EVERYONE the values gr1 , gr2 , gr3 , gr4 , gr5 , and gs AND g itself. (Recall- we think
Discrete Log is HARD so this information does not reveal r1, r2, r3, r4, r5 or s.)

NOW when A2, A4, A7, A8, A9 get together they do the following:

1. A2 reveals what f(2) is. Let what A2 reveals be called f2q (stands for f(2)?). We will be able to
TEST if it really is f(2).

2. They all compute the following to VERIFY that f(2) = f2q.

(gs)2
0×(gr1)2

1×(gr2)2
2×(gr3)2

3×(gr4)2
4

= gs×g21r1×g22r2×g23r3×g24r4 = gs+21r1+22r2+23r3+24r4 = gf(2)

SO, the result is REALLY gf(2). NOW they all compute gf2q. If they MATCH then this VERIFIES
that f2q = f(2) without revealing anything else about the polynomial.

3. We do similar things to verify the other f ’s.

4. Once all of the f ’s are verified they can use them to reveal what the secret is.

Verifiable Secret Sharing has the advantage that if someone is lying you can detect that someone is
lying, though you won’t know who. However, there is a disadvantage: poly-secret sharing and the random-
string secret sharing are all information-theoretic secure. Verifiable secret sharing is only secure if none of
the players can compute discrete log.

The VSS scheme above has one other advantage. Lets say t′ ≥ t people get together of which t are
honest. Then the secret can be found: first find out who is lying and do not use them.

12

